

Mathematics 1983

10.

13

15.

1. If M represents the median and D the mode of the measurements 5, 9, 3, 5, 8 then (M,D) is

A.	(6,5)	B.	(5,8)	C.	(5,7)
D.	(5,5)	E	(7,5)		

A construction company is owned by two partners X and Y and it is agreed that their profit will be divided in the ratio 4:5. at the end of the year. Y received #5,000 more than x. what is the total profit of the company for the year?
A. #20,000.00 B. P'0#25,000.00 C. #30,000.00

D. #15,000.003 E.#45,000.00

- Given a regular hexagon, calculate each interior angle of the hexagon.
 A. 60^o B. 30^o C. 120^o
 - D. 45° E. 135°
- 4. Solve the following equations 4x-3=3x+y=2y+5x-12A. 4x=5, y=2 B. x=2, y=5 C. x=-2, y=-5D. x=5, y=-2 E. x=-5, y=-2
- 5. If x = 1 is root of the equation $x^3 - 2x^2 - 5x + 6$, find the other roots A. -3 and 2 B. -2 and 2 C. 3 and -2 D. 1 and 3 E. -3 and 1
- 6. If x is jointly proportional to the cube of y and the fourth power of z. In what ratio is x increased or decreased when y is halved and z is doubled?
 A. 4:1 increase B. 2:1 increase C. 1:4 decrease
 D. 1:1 no change E. 3:4 decrease
- 7.

In the above figure PQR = 60° , QPR = 90° , PRS = 90° , RPS = 45° , QR= 8cm. Determine PS A. $2\sqrt{3}$ cm B $4\sqrt{6}$ cm C. $2\sqrt{6}$ cm D $8\sqrt{6}$ cm E 8cm

8. Given that $\cos z = L$, where z is an acute angle find an expression for $\underline{\text{Co} + \text{Z} - \text{cosec}}_{\overline{z}}$

A. 1-L
1+L
B. L²-
$$\sqrt{1-L^2}$$
L. (C1+L) + $\sqrt{1-L^2}$
D. $\sqrt{L-1}$
E. L-(L²-1)

$$(L1+L^2) + \sqrt{1-L^2}$$
 $1 + \sqrt{1-L^2} + \sqrt{1-L^2}$

9. If 0.0000152 x 0.00042 = A x 10⁸, where 1 £ A < 10, find A and B.
A. A=9, B=6 38 B. A=6.38, B=-9 C. A=6.38, B=9 D. A=6.38, B=-1 E. A=6.38, B=1 If x + 2 and x - 1 are factors of the expressions $lx + 2kx^2 + 24$, find the values of 1 and k

A.
$$1=-6, k=-9$$
 B. $1=-2, k=1$ C. $1=-2, k=-1$
D. $1=0, k=1$ E. $1=6, k=0$

11. Make T the subject of the equation

$$\frac{av}{1-V} = \sqrt[3]{\frac{2V+T}{a}}$$

- A. 3av/(1-v) B. $2v(1-v)^2 a^2v^2/2a^2v^2 (1-V)^2$
- C. $2v(1 v)^2 + a^3v^2/2a^2v^2 + (1 v)^2$

D.
$$2v(1 - v)^2 - a^4v^3/2a^3v^3 - (1 - v)^3$$

E.
$$2v(1-v)^3 - a^4v^3/2a^3v^3 + (1-v)^3$$

In a class of 60 pupils, the statistical distribution of the number of pupils offering Biology, History, French, Geography and Additional Mathematics is as shown in the pie chart above. How many pupils offer Additional Mathematics?

A.	15	B.	10	C.	18
D.	12	E	28		

The value of $(0.303)^3 - (0.02)^3$ is A. 0.019 B. 0.0019 C. 0.00019 D. 0.000019 E. 0.000035

14. y varies partly as the square of x and y partly as the inverse of the square root of x. write down the expression for y if y = 2 when x = 1 and y = 6 when x = 4

A.
$$y = \frac{10x^2 + 52}{31 \ 31\sqrt{x}}$$

B. $y = x^2 + \frac{1}{\sqrt{x}}$
C. $y = x^2 + \frac{1}{2}$
D. $y = \frac{x^2 + 1}{31 \ 31\sqrt{x}}$
E. $y = \frac{10}{31(\sqrt{x})}(x^2 + \frac{1}{2})$
Simplify $(x - 7) / (x^2 - 9) (x^2 - 3x) / (x^2 - 49)$
A. $x/(x - 3)(x + 7)$
B. $(x + 3)(x + 7)$
C. $x/(x - 3)(x - 7)$
D. $x/(x + 3)(x + 7)$
E. $x/(x + 4)(x + 7)$

16. The lengths of the sides of a right-angled triangle at (3x + 1)cm, (3x - 1)cm and x cm. A. 2 B 6 C 18 D. 12 E 0

17. The scores of a set of a final year students in the first semester examination in a paper are 41,29,55,21,47,70,70,40,43,56,73,23,50,50. find the median of the scores.
A. 47 B. 48¹/, C. 50

A. 47 B.
$$48^{1/2}$$
 C. 50
D. 48 E. 49

Which of the following equations represents the above graph?

G

 150°

D.

7

Е

0

A. $y=1+2x+3x^2$ B. $y=1-2x+3x^2$ C. $y=1+2x 3x^2$ D. $y=1-2x-3x^2$ E. $y=3x^2+2x-1$

The above figure FGHK is a rhombus. What is the value of the angle x?

PQRS is a desk of dimensions 2m x 0.8m which is inclined at 300 to the horizontal. Find the inclination of the diagonal PR to the horizontal. 22025 D 200

A.	23°35'	B.	30°	C. 15º36
D.	10^{0}	E.	10°42'	
Find x	$if(x_{hase 4})^2$	= 100 1	1000 _{base 2}	
A.	6	B.	12	C. 100
D.	210	E.	110	

22. Simplify
$$\log_{10} a^{1/2} + 1/4 \log_{10} a - 1/12 \log_{10} a^7$$

A. 1 B 7/6 $\log_{10} a$ C. 0
D. 10 E a

23. If w varies inversely as V and u varies directly as w³, find the relationship between u and V given that u = 1, when V = 2

A.
$$u=8V^3$$
 B. $u=2\sqrt{V}$ C. $V=8/u^2$
D. $V=8u^2$ E. $U=8/v^3$

24. Solve the simultaneous equations for x $x^2 + y - 8 = 0$ y + 5x - 2 = 0

- 6,-28 C. A. -28,7В. 6,-1 D. E -1,73,2
- 25. Find the missing value in the following table.

							/		
		X		-2	-1	0	1	2	3
	$\mathbf{y} = \mathbf{x}^{\mathbf{Q}}$	- x + 3			3	3	3	9	27
	A. D.	-3 13	B. E	C	3 9	(-9	
26.									
		130%	och						
	If O is the val	the centr	e of t	he ci	rcle ir	n the f	igure	above.	Find
	A. D.	50 65	B. E		260 130	(2	100	
27.	Find th a pie cl A. 15 ⁰ C. 6 ⁰ .	he angle of th hart of th 2,25 ^{0,} 35 ^{0,} 4 10 ^{0,} 14 ^{0,} 16	of the te foll 0 ^{0,} 65 ^{0,} 5 ^{0,} 26 ^{0,}	sect lowin	ors rej 1g dat B.60 D.30	presen a. 6 0 ⁰ , 100 ^{0,} 0 ⁰ , 50 ^{0,7}	nting 6 5,10,14 140 ^{0,} 16 70 ^{0,} 80 ^{0,}	each it 1,16,26 50º,260º 130º	em in
	E. N	None of th	ie abo	ve	210		0.00	100	
28.	The sc 65,65,5 What i	ores of 5,60,60,6 s the sur	16 stu 5,60,7 n of t	uden 70,75 he m	ts in a ,70,65 edian	a Mat ,70,60 and n	hema ,65,65 nodal	tics te ,70 scores	st are s?
7	A. D.	125 150	B. E		130 137.:	5		140	
29.	The let put into the box	ters of th o a box. C x. Find th	ie woi One of ne pro	rd M f the l obabi	ATRI letter i lity of	CULA s draw draw	TION vn at r ing a	l are cu andom vowel.	it and from
	A. D.	2/13 8/13	B. E.		5/13 4/13	(<u>.</u>	6/13	3
30.	Correc three si answer	t each of ignifican to three	the n t figu signi	umbo res a ificai	er 59.8 nd mu nt figu	81789 ltiply ires.	and 0 them,	.07468 giving	329 to g your
	A. D.	4.46 4.49	B. E.		4.48 4.50	(2	4.47	7
31.	If a rod error, v A.	of length what is th 55	n 250 ne per B.	cm is centa	a meas age eri 10	ured a ror in	s 2550 measi	em lon uremei 5	ger in nt?
	D.	4	E.		2		-	-	
32.	If (2/3) A. m= D. m=	m (3/4)n 4, n=2 4, n=-2	n = 25 B. E.	6/729 m=- m=-	9, find -4,n=- -2,n=-	theva 2 (llues o C. m=	f m an -4,n=	d n 2
33.	Withou + log (it using t	ables	find	thenu	imeric	cal val	ue of l	og ₇ 49
	A.	1	B		2	(2	3	

21.

19.

- 34. Factorize completely $81a^4 16b^4$
 - A. $(3a+2b)(2a-3b)(9a^2+4b^2)$
 - B. $(3a 2b)(2a 3b)(4a^2 9b^2)$
 - C. $(3a-2b)(3a-2b)(9a^2+4b^2)$
 - D. $(3a-2b)(2a-3b)(9a^2+4b^2)$
 - E $(3a-2b)(2a-3b)(9a^2-4b^2)$
- 35. One interior angle of a convex hexagon is 170° and each of the remaining interior angles is equal to x° . find x

11					
A.	120°	B	110°	С	105°
D.	102°	E	100°		

36. PQRS is a cyclic quadrilateral in which PQ = PS. PT is a tangent to the circle and PQ makes and angle 50° with the tangent as shown in the figure below. What is the size of QRS?

37. A ship H leaves a port P and sails 30km due South. Then it sails 60km due west. What is the bearing of H from P?

A.	26°34'	В	243°26'	С	116º34'
D.	63°26'	Е	240°		~

38. In a sample survey of a university community the following table shows the percentage distribution of the number of members per household.

No of members									
per household	1	2	3	4	5	6	7	8	Total
Number of									
households	3	12	15	28	21	10	7	4	100

3 None

39. On a square paper of length 2.524375cm is inscribed a square diagram of length 0.524375. find the area of the paper no covered by the diagram correct to 3 significant figures.

A.	6.00cm ²	B	6.10cm ² C.	$6.cm^2$
D.	6.09cm ²	E	4.00cm ²	

41. In the figure below find PRQ

The farm yields of four crops on a piece of land in Ondo are represented on the pie chart above. What is the angle of the sector occupied by Okro in the chart?

In the figure above, PQR is a straight line. Find the values of x and y

- A. $x = 22.5^{\circ}$ and $y = 33.75^{\circ}$
- B. $x = 15^{\circ}$ and $y = 52.5^{\circ}$

44.

- C. $x = 22.5^{\circ}$ and $y = 45.0^{\circ}$
- D. $x = 56.25^{\circ} \text{ and } y = 11.5^{\circ}$
- E $x = 18.^{\circ} \text{ and } y = 56.5^{\circ}$

30 ⁰ 0 1 2r ⁰ T
he figure above PT is a tangent to the circle with tre O. if PQT = 30° find the value of PTO 30_{\circ} B. 15_{\circ} C. 24° 12° E 60°
bled his speed and drove for another 3 hours. bled his speed did he bled his speed did he bled his speed did he bled his speed his speed his speed he bled he bled
50km/hr E. 100km/hr.
84
n invested a total of #50,000 in two companies. If se companies pay dividend of 6% and 8% pectively, how much did he invest at 8% if the total
d is #3.700? #15,000 B. #29,600 C. #21,400 #27,800 E. #35,000
rty boys and x girls sat for a test. The mean of the s' scores and that of the girls were respectively 6
8. find x if the total score was 468. 38 B. 24 C. 36 22 E. 41
e cost of production of an article is made up as ows Labour #70
e cost of production of an article is made up as ows Labour #70 Power #15 Materials #30 Miscellaneous #5
e cost of production of an article is made up as ows Labour $\#70$ Power $\#15$ Materials $\#30$ Miscellaneous $\#5$ d the angle of the sector representing labour in a pie rt. 210^{0} B 105^{0} C 175^{0}
e cost of production of an article is made up as ows Labour #70 Power #15 Materials #30 Miscellaneous #5 d the angle of the sector representing labour in a pie rt. 210^{0} B. 105^{0} C. 175^{0} 150^{0} E. 90^{0} a chooses at random a number between 1 and 300
e cost of production of an article is made up as ows Labour #70 Power #15 Materials #30 Miscellaneous #5 d the angle of the sector representing labour in a pie rt. 210° B. 105° C. 175° 150° E. 90° a chooses at random a number between 1 and 300. at is the probability that the number is divisible by

- 10. Find without using logarithm tables, the value of $Log_{27} - Log_{14}64$
 - Log₃1/81 А. 7/4 В. -7/4 C. -3/2D. 7/3 E. -1/4
- 11. A variable point P(x, y) traces a graph in a two dimensional plane. (0, -3) is one position of P. If x increases by 1 unit, y increases by 4 units. The equation of the graph is
 - -3 = y + 4/x + 1A. B. 4y = -3 + xC. y/x = -3/4D. y + 3 = 4xE. 4y = x + 3
- 12. A trader in a country where their currency 'MONT' (M) is in base five bought 103(5) oranges at M14(5) each. If he sold the oranges at $M24_{(5)}$ each, what will be his gain?

M103(5) M102(5) A. Β. M1030₍₅₎ C. M2002(5) D. E. M3032

13. Rationalize

 $(5\sqrt{5} - 7\sqrt{5})(/\sqrt{7} - \sqrt{5})$ -√35 -2√35 4√7 - 6√5 C. A. B. 4√7 - 8√5 E. √35 D.

14. Simplify

		3 ⁿ – 3	n – 1		
	3^{3} x	$3^{n} - 27$	$x 3^{n-1}$		
A.	1	B.	0	C.	1/27
D.	$3^{n} - 3^{r}$	^{n-1}E	2/27		

- 15. p varies directly as the square of q an inversely as r. if p = 36, when q = 3 and r = p, find p when q = 5 and r = 2A. 72 B. 100 C. 90 D. 200 E. 125
- 16. Factorise $6x^2 - 14x - 12$ 2(x+3)(3x-2)B. 6(x-2)(x+1)A. C. 2(x-3)(3x+2)D. 6(x+2)(x-1)E. (3x+4)(2x+3)
- 17. A straight line y = mx meets the curve $y = x^2 - 12x + 40$ in two distinct points. If one of them is (5,5), find the other (8,5)
 - (8,8)A. (5,6)B. C. D. (7,7)E. (7,5)
- 18. The table below is drawn for a graph $y = x^2 - 3x + 1$

X	-3	-2	-1	0	1	2	3
$y = x^2 - 3x + 1$	1	-1	3	1	-1	3	1

From x = -2 to x = 1, the graph crosses the x-axis in the range(s)

- -1 < x < 0 and 0 < x < 1A.
- -2 < x < -1 and 0 < x < 1B. C.
- -2 < x < -1 and 0 < x < 1D.
 - 0 < x < 1 E1 < x < 2

19. In a racing competition. Musa covered a distance of 5xkm in the first hour and (x + 10)km in the next hour. He was second to Ngozi who covered a total distance of 118km in the two hours. Which of the following inequalities is correct?

A.
$$0 < -x < 15$$
 B. $-3 < x < 3$
C. $15 < x < 18$ D. $0 < x < 15$
E. $0 < x < 18$
20. $2x + 3y = 1$ and $y = x - 2y = 11$, find $(x + y)$
A. 5 B. -3 C. 8
D. 2 E -2

Tunde and Shola can do a piece of work in 18days. Tunde can do it alone in x days, whilst Shola takes 15 days longer to do it alone. Which of the following equations is satisfied by x?

A.
$$x^2-5x-18=0$$
 B. $x^2-20x+360=0$
C. $x^2-21x-270=0$ D. $2x^2+42x-190=0$
E. $3x^2-31x+150=0$

If fx) = 2(x - 3)2 + 3(x - 3) - 4 and $g(y) = \sqrt{5} + y$, find g(f(3))22. and $g{f(4)}$

3 and 4 B. -3 and 4-3 and -4 3 and -4 D. 0 and $\sqrt{5}$

The quadratic equation whose roots are $1\sqrt{13}$ and 1 + 1 $\sqrt{13}$ is

- $x^{2}+(1-\sqrt{13})x+1+\sqrt{13}=0$ A.
- В $x^{2}+(1-\sqrt{13})x+1-\sqrt{13}=0$
- С $x^2 + 2x + 12 = 0$ D. $x^2 - 2x + 12 = 0$ $x^2 - 2x - 12 = 0$
- E

E

Find a factor which is common to all three binomial expressions

	$4a2 - 9b^2$, a^3	$4a2 - 9b^2$, $a^3 + 27b^3$, $(4a + 6b)^2$							
A.	4a + 6b	B.	4a – 6b						
C.	2a + 3b	D.	2a - 3b						
E	none								

What is the volume of the regular three dimensional figure drawn above?

A.	160cm ³	B.	48cm^3	C.	96cm ³
D.	120cm ³	E.	40cm^3		

If (x - 2) and (x + 1) are factors of the expression $x^3 + px^2$ +qx + 1, what is the sum of p and q?

A.	0	B.	-3	Ċ.	3
D.	-17/3	E.	-2/3		

26.

21.

24.

7. If three number p,q,r are in the ratio 6:4:5 find the value of (3a - a)/(4a + r)

 $\begin{array}{cccc} + 2p + 1 = 0 \text{ has equal roots} \\ \text{A.} & (0,12) & \text{B.} & (1,2) & \text{C.} & (21,0) \\ \text{D.} & (4.5) & \text{E} & (3.4) \end{array}$

14.	If $e^{x} = 1 + x + x^{2}/12 + x^{3}/1.2.3 + \dots$ find $1/e^{1/2}$ A. $1 - \underline{x} + \underline{x^{2}} - \underline{x^{2}} + \dots$ B. $1 + \underline{x} + \underline{x^{2}} + \underline{x^{2}}$ $2 1.2^{3} 2^{4} 3 2 1.2^{2} 2^{3}.3$	25.	If $f(x - 2) = 4x^2 + x + 7$ find $f(1)$ A. 12 B. 27 C. 7 D. 46 E. 17
	C. $1 + \underline{x} + \underline{x^2} - \underline{x^2} + \dots$ 2 $1.2^3 2^4 3$ D. $1 - \underline{x} + \underline{x^2} - \underline{x^2} + 2 1.2^2 2^3 .3$	26.	In DXYZ, XY = 13cm, YZ = 9cm, XZ = 11cm and XYZ =
	E. $1+\underline{x}^3 + \underline{x}^3 - \underline{x}^4 + 1.2$ 12.4 12.63		q^0 . find $\cos q^0$ A. 4/39
5.	$(4\sqrt{3} + 4\sqrt{2})(4\sqrt{3} - 4\sqrt{2})(3\sqrt{3} + \sqrt{2})$ is equal to		B. 43/39 C. 209/286
	A. 0 B. $4\sqrt{3} + 4\sqrt{2}$ C. $(4\sqrt{2} - 4\sqrt{3})(\sqrt{3} + \sqrt{2})$		D. 1/6 E 43/78
	D. $\sqrt{3} + \sqrt{2}$ E. 1	27.	Find the missing value in the table below
16.	In a restaurant, the cost of providing a particular type of food is partly constant and partly inversely		x -2 -1 0 1 2 3
	proportional to the number of people. If the cost per head for 100people is 30k and the cost for 40 people is		x z 1 0 1 2 0 y = x ² x + 3 3 3 9 27
	60k, find the cost for 50 people		A. 32 B14 C. 40
	A. 15k B. 45k C. 20k D. 50k E. 40k		D. 22 E. 37
17.	The factors of $9 - (x^2 - 3x - 1)^2$ are	28.	Find the number of goals scored by a football team in 20matches is shown below
	A. $-(x-4)(x+1)(x-1)(x-2)$ B. $(x-4)(x-1)(x-1)(x+2)$		No. of goals 0 1 2 3 4 5 No. of matches 3 5 7 4 1 0
	C. $-(x-2)(x+1)(x+2)(x+4)$ D. $(x-4)(x-3)(x-2)(x+1)$		What are the values of the mean and the mode
	E $(x-2)(x+2)(x-1)(x+1)$	×	respectively? A. (1.75, 5) B. (1.75, 2)
18.	If $3^{2y} - 6(3^{y}) = 27$ find y A. 3 B1 C. 2	1 .	C. $(1.75, 1)$ D. $(2,2)$ E. $(2,1)$
	D. –3 E 1	29	If the hypotenuse of a right angle isosceles triangle is
19.	Factorize $abx^2 + 8y - 4bx - 2axy$	27.	2, what is the length of each of the other sides?
	A. $(ax - 4)(bx - 2y)$ B. $(ax + b)(x - 3y)$ C. $(ax - 2y)(by - 4)$ D. $(abx - 4)(x - 2y)$ E $(bx - 4)(ax - 2y)$		D. 1 E. $\sqrt{2}$ -1
20.	At what real value of x do the curves whose equations	30.	If two fair coins are tossed, what is the probability of getting at least one head?
	are $y = x^3 + x$ and $y = x^2 + 1$ intersect?		A. ¹ / ₄ B. ¹ / ₂ C. 1 D. ² / ₃ F. ³ / ₄
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	
21.	If the quadrilateral function $3x^2 - 7x + R$ is a perfect square find R	31.	The ratio of the length of two similar rectangular blocks is 2:3, if the volume of the larger block is 351cm ³ , then the volume of the other block is
	A. 49/24 B. 49/3 C. 49/6		A. 234.00 cm ³ B. 526.50 cm ³
	D. 49/12 E. 49/36		C. 166.00cm ³ D. 729.75cm ³ E 104.00cm ³
22.	Solve the following equation 2/(2r-1) - 5/3 = 1/(r+2)	32.	The bearing of bird on a tree from a hunter on the
	A. (-1, 5/2) B. (-1, -5/2) C. (5/2, 1) D. (2, 1)		ground is $N72^{\circ}E$. what is the bearing of the hunter from the bird?
	E (1,2)		A. $S18^{0}W$ B. $S72^{0}W$ C. $S72^{0}Eq$ D. $S27^{0}E$
23.	Solve for (x,y) in the equations $2x + y = 4$: $x^2 + xy = -12$		$E S27^{\circ}W$
	A. $(6, -8); (-2, 8)$ B. $(3, -4); (-1, 4)$ C. $(8, -4); (-1, 4)$ D. $(-8, 6); (8, -2)$		
	E (-4, 3);(4, -1)		
24.	Solve the simultaneous equations 2x - 3y + 10 = 10x - 6y = 5		
	A. $x = 2^{1/2}, y = 3^{1/3}$ B. $x = 3^{1/2}, y = 2^{1/3}$ C. $x = 2^{1/4}, y = 3$ D. $x = 3^{1/2}, y = 2^{1/3}$		
	E $x = 2^{1/2}, y = 2^{1/3}$		

8.	Simplify	0.03 x 4 x 0.0006	4		20.	Factor	rize $x^2 + 2a + ax + 2x$		
		0.48 x 0.012				A.	(x+2a)(x+1)	B.	(x+2a)(x-1)
	А.	3.6×10^2	B.	$36 \mathrm{x} 10^2$		C.	$(x^2 - 1)(x + a)$	D.	(x+2)(x+a)
	C.	3.6×10^3	D.	$3.6 \mathrm{x} 10^4$					
					21.	Sol	ve the equation $3x^2 +$	6x – 2	2=0
9.	Udoh d	eposited #150 00) in the	bank. At the end of 5		A.	$x = -1, \pm \sqrt{3/3}$	B.	$x = -1, \pm \sqrt{15}/\sqrt{3}$
	years th	ne simple interest	on the	principal was #55 00.		C.	$x = -2, \pm 2\sqrt{3/3}$	D.	$x = -2, \pm 2\sqrt{15/3}$
	At wha	t rate per annum	was the	interest paid?					
	A.	11%	B.	7 ¹ / ₃ %	22.	Simpl	lify. $1/5x + 5 + 1/7x$	(+7	
	C.	5%	D.	3 ¹ / ₂ %		А.	12/35+7	► B.	1/35(x+1)
10.	A num	per of pencils wer	e shared	l out among Bisi, Sola		C.	12x/35(x+1)	D.	12/35x + 35
	and Tu	nde in the ratio 2:	3:5 resp	pectively. If Bisi got 5,	22		2 0		1
	how ma	any were shared o	out?	05	23.	The	e curve $y = -x^2 + 3x + 2$	inter	rsects the coordinate axes
	A.	15	B. D	25 50		at	(1,0)(0,0)(1,0)	р	(4.0)(0.4)(1.1)
	Ċ.	30	D.	50		A. C	(4,0)(0,0)(-1,0)	B.	(-4,0)(0,4)(1,1)
11	These	a of Toson and L	a diffa	here 6 and the modulet		Ċ,	(0,0)(0,1)(1,0)	D.	(0,4)(4,0)(-1,0)
11.	of their	es of Tosan and Is	sa uniel	by 6 and the product	24	Eag	$torizo (A_0 + 3)^2$ (20)	$2)^2$	
	of then	ages is 107 . with	e men a	iges in the form (x, y),	24.	Гас	(a+1)(a+5) = (3a+1)(a+5)	· 2) B	(2, 5)(72, 1)
	A where a	(12.9)	R	(23, 17)		A. C	(a+1)(a+3) (a+5)(7a+1)	D. D	(a - 3)(7a - 1) a(7a + 1)
	A. C	(12, 3) (17, 11)	D. D	(23, 17) (18, 12)		Ċ,	(a+3)(7a+1)	D.	a(7a + 1)
	С.	(17, 11)	D.	(10, 12)	25	If 5	(x+2y) = 5 and $A(x+3y) = -5$	- 16	find $3^{(x+y)}$
12	In 1984	Ike was 24 vears	old and	lis father was 45 years	20.			- 10, R	1
12.	old in v	yhat vear was Ike	exactly	half his father's age?		C A	3	D.	1 27
	A	1982	B	1981		С.	5	D.	27
	C.	1979	D.	1978	26	Sim	polify $1/x - 2 + 1/x$	+2+	$2x/x^2 - 4$
	G	1717	D.	1970	20.				
13.	Simplif	ý (1	1)	α-1/√3		A.	$2x/(x-2)(x+2)(x^2-4)$) B.	$2x/x^2 - 4$
	I I	$\sqrt[3]{(\sqrt{5}+\sqrt{3})} - \sqrt{5}$	$\overline{5} - \sqrt{3}$					P	
					X	C.	$x/x^2 - 4$	D.4	$4x/x^2 - 4$
	А.	$\sqrt{3}/\sqrt{5}$	B.	-2/\[]3	77	Mal	tean the subject of the	form	aula
	С.	-2	D.	-1	27.	S = 6	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$: IOTII	lula
						S = 0	-6 - 12	R	y - 12
14.	Find n	if $Log_2 4 + Log_2 Z$ -	$-Log_2n$	=-1		л. v	$- \frac{0}{S^2} - \frac{12}{W}$	D.	$v = \frac{12}{25^2} - w$
	А.	10	В.	14		C v =	$-12 - 2s^2$	D	v = 12
	C.	27	D.	28		0.1-	W 25	Ъ.	$\frac{12}{2s^2 + w}$
									25 1 1
15.	(91/3 x	$(3^{-1/2})/(3^{-1/6} \times 3^{-2})$	/3)		28.	Find	the values of x which	ı satis	sfy the equation
							$16^{x} - 5x 4^{x} +$	-4 = 0)
	A.	1/3	B.	1		А.	1 and 4	B.	-2 and 2
	C.	3	D.	9		C.	0 and 1	D.	1 and 0
	10								
16.	If x var	ries directly as y	and $x =$	= 2 when $y = 1$, find x	29.	a/b	-c/d = k, find the val	lue of	Î
	when y	= 5	р	10		(3a ²	$^{2}-ac+c^{2)}/(3b^{2}-bd+c^{2})$	d^{2} i	n term of k
	A. C	2 125	B. D	10		A.	$3k^2$	B.	$3k - k^2$
	Ċ.	125	D.	250		C.	$17k^{2}/4$	D.	k^2
17	Eastori	to commistally							
17.	Factor	$\frac{2}{2}$ $\frac{2}{2}$ $\frac{1}{2}$	5ov3		30.	Atv	what point does the st	raigh	t line $y = 2x + 1$ intersect
	٨	$(2a + 5x^2)(4 + 25x^2)$	(ov)			the	$curve y = 2x^2 + 5x - 1$	1?	
	A. B	(2a+3x)(4+23) (2+5x)(4-10x)	(ΔX)	2)		A.	(-2, -3) and $(1/2, -3)$, 2)	B. $(-1/20)$ and $(2, 5)$
	D. C	(2 + 5x)(4 - 10x)	$x \pm 25ax$	\mathbf{x}^{2}		C.	(1/2, 2) and $(1,$	3)	D. $(1, 3)$ and $(2, 5)$
	с. D	(2a + 5x)(4 + 10a) a(2 + 5x)(4 + 10a)	x + 25a	x^2					
	D.	a(2 + 3x)(4 + 10a)	IN + 23a	x)	31.	A re	egular polygon on n	sides	has 160° as the size each
18	If $\mathbf{v} = \mathbf{v}/\mathbf{v}$	(x-3) + x/(x+4)	find v w	x = -2		inte	rior. Find n.	_	
10.	$\Delta = \frac{1}{\Delta}$	-3/5	B	$\frac{3}{5}$		А.	18	B.	16
	C.	_7/5	D.	3/5 7/5		C.	14	D.	12
	5		<i>D</i> .	115				â	
19.	Find al	the numbers x v	which se	tisfy the inequality 1/	32.	If co	$\cos q = a/b$, find $1 + ta$	ın²q	2 / 2
-/-	3(x+1)	-1 > 1/5 (x + 4)				A.	b^{2}/a^{2}	B.	a^{2}/b^{2}
	A.	x<11	B.	x<-1		C.	$(a^2 + b^2) / (b^2 - a^2)$	ℓ²) D.	$(2a^2 + b^2)/(a^2 + b^2)$
	C.	x>6	D.	x>11					

33. In the diagram below, PQ and RS are chords of a circle centre O which meet at T outside the circle. If TP = 24cm, TQ = 8cm and TS = 12cm, find TR.

34. The angle of elevation of the top of a vertical tower 50 metres high from a point X on the ground is 30°. From a point Y on the opposite side of the tower, the angle of elevation of the top of the tower is 60°. find the distance between the points X and Y.

A.	14.43m	В.	57.73m
C.	101.03m	D.	115.47m

35. A girl walk 45 metres in the direction 050° from a point Q to a point X. She then walks 24 metres in the direction 140° from X to a point Y. How far is she then from Q?

The figure is a solid with the trapezium PQRS as its uniform cross-section. Find its volume A. $102m^3$ B. $576m^3$

A. 102m³
C. 816m³

36.

37.

PQ and PR are tangents from P to a circle centre O as shown in the figure above. If $QRP = 34^\circ$. Find the angle marked x.

In the figure above, PQ//ST, RS//UV. If PQR = 35° and				
QRS = 63	5º, find STV			
A.	30 ⁰	B.	35 ⁰	
C.	55 ⁰	D.	65 ⁰	

Q

44.	An open 4m. fin costs #	rectangular bo d the total cost 2.00 to paint of	x externally of painting t ne square m	measures 4m x 3m x he box externally if it tetre.	48.	The peop groupe to dete	ble in a city with ad according to the according to the	a populat ieir ages. ber of pec	ion of 109 million Use the diagram pple in the 15-29	n were below years
	А.	#96.00	B.	#112.00		group.				
	C.	#136.00	D.	#160.00			60 yrs			
45.	Of the in 1979	nine hundred s), the following Anambra Imo Kaduna Kwara O a la	students adr g was the dis 185 135 90 110	nitted in a university stribution by state		45 - 35 45	24° 52° 64°	116	ader 15 15	
		Ondo Ovo	133 225			4	10-	• `	\checkmark	
	In a pie angle s A	e chart drawn t subtended at th	o represent e centre by B	this distribution, the Anambra is 65 ⁰		OF	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$			
	C.	74 ⁰	D.	88 ⁰				5 - 29 51	, ,	
46.	Find th 131, 13	e median of the 1, 100, 108 and	e numbers 89 119	9, 141, 130, 161, 120,		А. С.	29 x 10 ⁴ 16 x 10 ⁴	B. D.	26 x 10 ⁴ 13 x 10 ⁴	
	A. C.	131 123	B. D.	125 120	49.	A mar drawe shirt v	h kept 6black, 5 r. What is the provith his eyes clo	brown ar obability sed?	nd 7 purple shirt of his picking a p	ts in a purple
47.	Find th	e probability the probability the 50 is a prime	hat a numbe	er selected at random		A.	1/7 7/18	B. D	11/18 7/11	
	A.	3/11	B.	5/11		~	//10	D.	// 11	
	C.	3/10	D.	4/11	50.	The ta	ble below gives t	the scores	s of a group of stu	idents
					X	Scor	e 1 2 uency 2 4	3 4 7 14	5 6 7 8 12 6 4 1	3
						If the r	node is m and the	e number	of students who	scored
					\checkmark	4 or le A.	ss is S. What is ((27,4)	s, m)? B.	(14, 4)	
				C	j	C.	(13, 4)	D.	(4,4)	
					•	100				
				Mathema	atics	\$ 198	5 /			
4			1	Z					a	1.1
1.	A. C.	$ \begin{array}{ccc} 241 & \text{in base 5 t} \\ 71_8 & \text{B.} \\ 176_8 \end{array} $	o base 8 107 ₈ D.	241,8	4.	evalua	te (0.02)	wo signi 2 <u>174 x 1.2</u> 0.023789	2047)	d then
2	Find th	ne least length	of a rod w	hich can be cut into		A. C	0.8 1.1	B. D	0.9 1.2	
<i>L</i> •	exactly	equal strips,	each of eith	er 40cm or 48cm in		С.	1.1	D.	1.2	
	length. A. C.	120cm 360cm	B. D.	240ccm 480cm	5.	A train hr and same r	n moves from P t immediately re oute and at an av	o Q at an eturns fro verage spo centre ion	average speed of om O to P throug eed of 45km/h. fi	90km/ gh the nd the
3	A recta	ngular has lawı	n has an area	of 1815 square vards		A	55 00km/hr	B	60.00 km/hr	
5.	If its le that 1n	ngth is 50meter neters equals 1	rs, find its w 1yards	idth in metres. Given		C.	67.50km/hr	D.	75 00km/hr	
	A. C.	39.93 33.00	B. D.	35.00 30.00	6.	If the l width the rat	ength of a squar is decreased by 2 io of the area of ?	e is incre 20% to fo the recta	eased by 20% wh rm a rectangle, w angle to the area	ile its vhat is of the
		4				A. C.	6.5 5.6	B. D.	25.24 24.25	

7. Two brothers invested a total of #5,000.00 on a farm project. The farm yield was sold for # 15, 000.00 at the end of the season. If the profit was shared in the ratio 2:3, what is the difference in the amount of profit received by the brothers?

A.	#2,000.00	B.	#4,000.00
С.	#6,000.00	D.	#10,000.00

- Peter's weekly wages are #20.00 for the first 20 weeks and #36.00 for the next 24 weeks. Find his average weekly wage for the remaining 8 weeks of the year. If his average weekly wage for the whole year is #30.00
 A. #37.00
 B. #35.00
 C. #30.00
 D. #5.00
- 9. A man invests a sum of money at 4% per annum simple interest. After 3 years, the principal amounts to #7,000.00. find the sum invested

A.	#7,840.00	B.	#6,250.00
C.	#6,160.00	D.	#5,833.33

10. By selling 20 oranges for #1.35 a trader makes a profit 8%. What is his percentage gain or loss if he sells the same 20 oranges for #1.10?

А.	8%	В.	10%
C.	12%	D.	15%

Four boys and ten girls can cut a field in 5 hours. If the boys work at 1/4 the rate of which the girls work, how many boys will be needed to cut the field in 3 hours?
A. 180 B. 60

20

 3.0×10^{-3}

 0.3×10^{-3}

C. 25 D.

12.

Evalu	ate without usi	ing tables.	
А.	625/8	B.	8/625
C.	1/8	D.	8

- 13. Instead of writing 35/6 as a decimal correct to 3 significant figures, a student wrote it correct to 3 places of decimals. Find his error in standard form
 - A. 0.003 B. C. 0.3 x 10² D.
- 14. Simplify without using tables $(Log_26 - Log_23)/(Log_28 - 2Log_21/2)$ A. 1/5 B. $\frac{1}{2}$

15. Simplify without using tables $2\sqrt{14} \times (3\sqrt{21})/(7\sqrt{24x})/(2\sqrt{24x})/($

C.

- 16. If $p 2/3 (1 r^2)/n^2$, find n when $r = \ddot{O}1/3$ and p = 1A. 3/2B. 3C. 1/3D. 2/3
- 17. If $a = U^2 3V^2$ and $b = 2UV + V^2$ evaluate $(2a b) (a b^3)$, when u = 1 and v = -1A. 9 B. 15

D.

33

18. The formula Q = 15 + 05n gives the cost Q (in Naira) of feeding n people for a week. Find in kobo the extra cost of feeding one additional person.

B.

D.

200k

50k

A. 350k C. 150k

19. If P varies inversely as V and V varies directly as R^2 , find the relationship between P and R given that R = 7when P = 2

A.
$$P = 98R^2$$
 B. $PR^2 = 98$
C. $P = 1/98R$ D. $P = R^2/98$

20. Make y the subject of the formula $Z = x^2 + 1/y^3$

A.
$$y = \frac{1}{(Z - x^2)^3}$$

B. $y = \frac{1}{(Z + x^3)^{1/3}}$
C. $y = \frac{1}{(Z - x^2)^{1/3}}$
D. $y = \frac{1}{\sqrt[3]{Z - \sqrt[3]{x^2}}}$

Find the values of m which make the following quadratic function a perfect square

7.	$x^{2}+2(m+1)$	(1)x + m + 3	
A.	-1,1	B.	-1,2
C.	1,-2	D.	2,-2

Facto	orize $6^{2x+1} + 7(6x) - 5$
А.	$\{3(6^x) - 5\} \{2(6^x)\} + 1\}$
B.	$\{3(6^{x})-5\}$ $\{2(6^{x})\}$ - 1 $\}$
C.	$\{2(6^{x})-5\}$ $\{3(6^{x})\}+1\}$
D.	$\{2(6^{x})-5\}$ $\{3(6^{x})\}$ - 1 $\}$

Find two values of y which satisfy the simultaneous equations x + y = 5, $x^2 - 2y^2 = 1$

A.	12, -2	B.	-12, 12
C.	-12, 2	D.	2, -2

An $(n - 2)^2$ sided figure has n diagonals find the number n of diagonals for a 25 sided figure

А.	7	В.	8
C.	9	D.	10

25.

26.

24.

21.

A cubic function f(x) is specified by the graph show above. The values of the independent variable for which the function vanishes are

A.	-1, 0, 1	B.	-1 < x < 1
C.	x, - 1	D.	x>1

Solve the inequality x - 1 > 4(x + 2)

			/
A.	x>-3	B.	x<-3
C.	2 < x < 3 D.	-3 < 3	x < -2

40.41.42.	From two points X and X the angle of elevation 60° respectively. Find that X, Y and the fe horizontal plane. A. 4m C. $4\sqrt{3}m$ A room is 12m long. cosine of the angle wh with the floor of the m A. $15/17$ C. $8/15$ What is the circumfe A. R cos q	Y, 8m apart, n of the top of the height oot of the p B. D. 9m wide a nich a diago room B. D. erence of rac B.	and in line with a pole, of the pole are 30° and of the pole, assuming pole are on the same $8\sqrt{3}/2m$ $8\sqrt{3}m$ and 8m high. Find the onal of the room makes 8/17 12/17 dius of the earth? $2p R \cos q$	45. 46. 47.	what is 6cm w A. B. C. D. Taking from 5 and of A. C. The go divisio	he locus of ithin a circ: A circle The perj A straig A circle g the perio 30a.m to 7. darkness 187°30' 1 202°30' 1 als scored 1 ons are reco	the middle of radio of radio pendicu ht line y of radio d of da 00p.m, on that 72°30' 57°30' by 40 fo orded b	u-points lius 5cm is 4cm a ilar bise passing is 6cm a ylight o calculate day B. D. ootball tea elow	and with central of the original control of the origi	s of length entre O. thre O chords hter O day to be of daylight ree league
43.	The base of a pyram vertex is directly abov that the edge is 4.3cn A. 6cm	D. id is a squa re the centre n B.	2p K sin q are of side 8cm. If its , find the height, given 5cm		teams A. C.	21 91	l numb	4 3 cr of go B. D.	15 16 1 als scored 40 96	0 11 by dll the
44.	C. 4cm	D. P M M M M M M M M M M M M M M M M M M	3cm	48. 49. 50.	The nu by a gr the me A. C. Below test Score No. C. Find t paralle kite an A. C.	mbers 3,2,3 roup by a g an and Q th 18 16 are the sco of students of studentst	8,5,7,12 roup of he med: ores of a 1 2 3 3 CF(6) ility of m a squ	2,9 and 1 5 student ian the P B. D. 1 group c 2 3 4 5 10 8 Students B. D. 5 selectin iare, a re B. D.	4 are the ma s in a class P + Q is $17^{1/2}$ 15 of students i $\frac{5}{6}$ $\frac{6}{5}$ $\frac{6}{5}$ $\frac{5}{5}$ with score 38 5 ng a figure extangle, a r 2/5 1/5	rks scored test if P is n a music 7 8 9 2 4 12 s less man
1.	Simplify $(1 \frac{1}{2} \div 1 \frac{1}{4})$	<u>of 32)</u>	Mathema	atics	\$ 198	88				
2.	A. 3/256 B C. 6 D If x is the addition of 6, and y the H. C.F of	3/32 85 the prime n \$6,9, 15, fin	umbers between 1 and ad the product of x and	3.	A 5.0g c the per A. C. Find c	or salts was reentage er 20 2 prrect to or	s weigh ror? B. D.	ed by Ti 2 0.2 nal place	unde as 5.1	g. what is
	y A. 27 C. 33	B. D.	30 90	т.	0.2463 A. C.	3/0.0306 0.8 8.0		B. D.	1.8 8.1	

C /1

11

X X 71

5.	Two sisters, Taiwo and Ke of Taiwo's share to Kehin 2/3 of her share to Taiwo the store	chinde, own a store. The ratio ad's is 11:9. later Kehinde sells for #720.00. Find the value of	16.	If $g(y) = y - 3/11 + 11/y^2 - 9$ what is $g(y + 3)$? A. $\frac{y}{11} + \frac{11}{y(y+6)}$ B. $y + \frac{11}{y(y+3)}$
	A. #1,080.00 B. C. #3,000.00 D.	#2,400.00 #3,600.00		C. $\frac{y+30}{11} + \frac{11}{y(y+3)}$ D. $\frac{y+3+}{11} + \frac{11}{y(y-6)}$
6.	A basket contains green ratio 5:2:1. if there a corresponding new ratio balls are removed from t	n, black and blue balls in the are 10 blue balls, find the o when 10green and 10black he basket.	17.	Factorize completely $(x2 + x)^2 (2x + 2)^2$ A. $(x+y)(x+2)(x-2)$ B. $(x+y)^2(x-2)^2$ C. $(x+1)^2(x+2)^2$ D. $(x+1)^2(x+2)^2(x-2)$
	A. 1:1;1 C. 5:1:1	B. 4:2:1 D. 4:1:1	18.	Simplify $(x - y)$ $(x^{1/3} - y^{1/2})$ A. $x^2 = xy + y^2$ B. $x^{2/3} + x^{1/3} + y^{2/3}$
7.	A taxpayer is allowed 1/ pays 20% on the remain what is his income?	8 th of his income tax free, and nder. If he pays #490. 00 tax,	10	C. $x^{2/3} - x^{1/3} y^{1/3} - y^{2/3}$ D. $x^2 - xy + y^2$
	A. #560.00 C. #2,800.00	B. #2,450.00 D. #3,920.00	19.	Solve the following equation for x $\frac{x^2 + 2x}{r^2} + 1 = 0$ r^1
8.	Evaluate $(8^{1/3} \times 5^{2/3}) / 10^{2/3}$ A. 2/5 C. $2\sqrt{5}$	B. 5/3 D. 3√5		A. r^2 B. $1/r^2$ C. $-1/r^2$ D. $1/r$
9.	If $Log_{10}2 = 0.3010$ and Lo using logarithm tables lo	$g_{10}^{3} = 0.4771$, evaluate, without $g_{10}^{3} = 4.5$	20.	List the integral values of x which satisfy the inequality $1 < 5 < -2x < 7$
	A.0.3010C.0.6352	B. 0.4771 D. 0.9542	7	A1,0,1,2 B. 0,1,2,3 C1,0,1,2,3, D1,0,2,3
10.	Find m such that $(m, 3)$ A. 1 C 3	$(1 - \sqrt{3})^2 = 6 - \sqrt{3} = 6 - 2\sqrt{3}$ B. 2 D. 4	21.	Given value that $\frac{3x-5y-3=0}{2y-6x+5=0}$ the value of (x, y) is
11.	The thickness of an 800-p the thickness of one leaf	baged book is 18mm. Calculate	Q	A. (-1/8, 19/24) B. (8, 24/10)
	in metres and in standard A. 2.25×10^{4} m C 2.25×10^{5} m	1 form. B. $4.50 \times 10^4 \text{m}$ D. $4.50 \times 10^5 \text{m}$	22	C. (-8, 24/19) D. (19/24, -1/8)
12.	Simplify $(x+2) - (x-2)$		<i>LL</i> .	bx ² + qx + b = 0 A $-b\pm\sqrt{b^2-4ac}$ B $-b\pm p^2-4pb$
	A. $\frac{3}{x+1}$ C. $5x+6$	B. $\frac{3x+2}{(x+1)(x+2)}$ D. $2x2+5x+2$		$C \frac{2a}{-q\pm\sqrt{q^2-4bp}} \qquad D \frac{2a}{-q\pm\sqrt{p^2-4bp}} \\ 2p \qquad 2p \qquad 2p$
12	(x+1)(x+2)	(x+1)(x+2)	23.	Simplify $1 + 1$ (x ² +5x+6) (x ² +3x+2)
15.	$1/p = (a^{2} + 2ab + b^{2})$ $(a - b)$ $1/q = (a + b)$ $(a^{2} - 2ab + b^{2})$	and find p/g		A. $\frac{x+3}{(x+1)(x+2)}$ C. $\frac{2}{(x+1)(x+3)}$ B. $\frac{1}{(x+1)x+2)x+3}$ D. $\frac{4}{(x+1)(x+3)}$
	A. $\frac{a+b}{a-b}$ B. C. $\underline{a-b}$ D.	$\frac{1}{a^2 - b^2}$ $\frac{a^2 - b^2}{a^2 - b^2}$	24.	Evaluate $\frac{(4a^2 - 4ab^2)}{(2a^2 + 5ab - 7b^{2)}}$
14.	a + b If x varies inversely as the y = 8 find y when x = 3	cube root of y and $x = 1$ when		A. $\frac{a - b}{2a + b}$ B. $\frac{2a + 7b}{a - b}$
	A. 1/3 C. 8/27	B. 2/3 D. 4/9		C. $\frac{2a - 7b}{a + b}$ D. $\frac{2a - 7b}{a - b}$
15.	If $a = -3$, $b = 2$, $c = 4$, call A. 37	culate $(\underline{a^3} - \underline{b^3} - \underline{c^{1/2}})$ (b-1-c) B37/5		
	C. 3//5	D. –3/		

In the figure above STQ = SRP, PT = TQ = 6cm and QS= 5cm. Find SR.

A.	47/5	В.	5
C.	37/5	D.	22/5

36.

Four interior angles of a pentagon are $90^{\circ} - x^{\circ}$, $90^{\circ} + x^{\circ}$, $10^{\circ} - 2x^{\circ}$, $110^{\circ} + 2x^{\circ}$, find the fifth interior angle.

10 -	2Λ , 110	12X. Intu the m	un miterior ai
A.	110°	B.	120°
C.	1300	D.	140°

30.

25.

26.

27.

28.

29.

120° 100^c R

In the figure above, PQRS is a circle. If chords QR and RS are equal, calculate the value of x

i to ui	e equal, carcalate	ine varae	01 /1
A.	80°	B.	60°
C.	45°	D.	40°
	5		

In the figure above, PS = RS = QS and $QSR = 50^{\circ}$. find OPR.

A.	25°	B.	40°
C.	50°	D.	65 ⁰

In the figure above, XR and YQ are tangents to the circle YZXP if $ZXR = 45^{\circ}$ and $YZX = 55^{\circ}$ find ZYQ. 1350 125° A. B. C. 100° D. **90**⁰

16m

From a point $14\sqrt{3}$ metres away from a tree, a man 39. discovers that the angle of elevation of the tree is 30° . If the man measures this angle of elevation from a point 2meters above the ground how high is the tree? 12m D 14m

C.
$$14\sqrt{3}m$$
 D.

Alero starts a 3km walk from P on a bearing 023°, she 40. then walks 4km on a bearing 113° to Q what is the bearing of Q from P?

If $\cot q = x/y$, find $\operatorname{cosec} q$ 41.

A.
$$1/y(x^2+y)$$

C.
$$1/y(x^2+y)$$

42. In triangle PQR, PQ = 1cm, QR = 2cm and $PQR = 120^{\circ}$. Find the longest side of the triangle

D. y/x

A. 3
C.
$$3\sqrt{7}$$
 D. $\sqrt{7}$

44. If a metal pipe 10cm long has an external diameter of 12cm and a thickness of 1cm, find the volume of the metal used in making the pipe

	abea III IIIIIB	Pipe.	
A.	120pcm ³	B .	110pcm ³
C.	60pcm ³	D.	50pcm ³
	A		

45.

46.

47.

49.

50.

In the figure above, a solid consists of a hemisphere surmounted by a right circular cone with radius 3.0cm and height 6.0cm. find the volume of the solid.

A.	18pcm ³	B.	36pcm ³
C.	54pcm ³	D.	108pcm ³

PQR is a triangle in which PQ= 10 ccm and QPR = 60° . S is a point equidistant from P and Q. also S is a point equidistant from PQ and PR. If U is the foot of the perpendicular from S on PR, find the length SU in cm to one decimal place.

B.	2.9
D.	3.3
	B. D.

In a class of 150 students, the sector in a pie chart representing the students offering Physics has angle 12⁰. How many students are offering Physics?

A.	18	B.	15
C.	10	D.	5

If x and y represents the mean and the median respectively of the following set of numbers; 11, 12,13,14,15,16,17,18,19,21,. Find x/y correct to one decimal place.

A.	1.6	B.	1.2
C.	1.1	D.	1.0

Score (x)	0	1	2	3	4	5	6
Frequency (/)	7	11	6	7	7	5	3

In the distribution above, the mode and the median respectively are

A.	1.3	B.	1.2
C.	3.3	D.	0.2

If two dice are thrown together, what is the probability of obtaining at least a score of 10?

A.	1/6	B.	1/12
C.	5/6	D.	11/12

Mathematics 1989

									*	
1	Which	of the following	o is in des	cending order?	13	Make F	the subject of the	e formula		
1.		0/10 / 15 3// 17	/10 R	A/5 0/10 3/A 17/20	15.	$S = \sqrt{2}$	$\mathbf{P} \perp \mathbf{T}$)	lormula		
	A. C	6/10 17/20 1/5	2// D	4/5,9/10,9/4,17/20		$S = \sqrt{2}$	$(\underline{\mathbf{R}} + \underline{\mathbf{I}})$			
	Ċ,	0/10,17/20,4/3,	J#4 D.	4/3,9/10,17/10,3/4		$\Delta R -$	- T B	т		
2.	Evaluate	e 2,700, 000 x 0.0	3 18.000			A. K-	$(TS^2 - 1)$ D.	$2(TS^2 -$	1)	
	A.	$4.5 \times 10^{\circ}$	B.	4.5 x 10 ¹				,	,	
	C.	4.5×10^2	D.	$4.5 \ge 10^3$		C R=	т	D.	Т	
						_	$(TS^2 + 1)$	2($(TS^2 + 1)$	
3.	The p	rime factors of 2	,520 are						· · · ·	
	A.	2,9,5,	B.	2,9,7,	14.	Find th	e value of the exp	ression		
	C.	2,3,5,7,	D.	2,3,7,9,			32 - 64 81	when x =	= -3/4	
							81 ^{x3} x ^{x2}	16		
4.	If 12	$= X_7$ find x wher	e e = 12			A. 👞	10 ¹ / ₂	B.	10 ¹ / ₆	
	A. Č	20	B.	15		С.	33/2	D.	$-13^{1}/_{2}$	
	C.	14	D.	12			-0		2	
					15.	The o	cost of dinner for	a group	of students is part	ly
5.	Simpl	ify 3√64r -6) ^{1/2}				ccons	stant and partly v	aries dire	ctly as the number	of
						stude	ents. If the cost is	s #74.00	when the number	of
	А.	r	В.	2r		stude	nts is 20, and #96	.00 when	the number is 30, fir	ıd
	C.	1/2r	D.	2/r		the co	ost when there are	e 15 stude	ents.	
						A.	#68.50	B.	#63.00	
6.	What	is the difference	between 0.	007685 correct to thre	æ	C.	#60.00	D.	#52.00	
	signif	icant figures and	d 0.007685	5 correct to four place	es					
	of dec	imal?			16.	$\int \mathrm{If} f(x)$	$=2x^2+5x+3$, fin	df(x+1)		
	А.	10-5	B.	7 x 10 ⁻⁴		A.	$2x^2 - x$	B.	$2x^2 - x + 10$	
	C.	8 x 10 ⁻⁵	D.	10 -6	\prec \downarrow	C.	$4x^2 + 3x + 2$	D.	$4x^2 + 3x + 12$	
7.	If a : b	y = 5:8, x:y = 25	5 : 16, eval	uate a/x : b/y	17.	Solve	e the positive num	ber x sucl	h that	
	A.	125:128	B.	3:5			$2^{(x^3 - x^2 - 2x)} = 1$			
	C.	3:4	D.	2:5		A.	4	B.	3	
				>	7	С.	2	D.	1	
8.	Oke d	eposited #800.0	0 in the bar	nk aat the rat of $12_{1/2}$	%					
	simpl	e interest. After	some time	e the total amount wa	as 18.	Simp	lify <u>(32x - 4x²)</u>			
	one a	nd half times the	e principal	. For how many year	rs		(2x + 18)			
	was th	ne money left in	the bank			A.	2(x-9)	B.	2(9 + x)	
	A.	2	B.	4		C.	$81 - x^2$	D.	-2(x - 9)	
	C.	$5^{1}/_{2}$	D.	8	10	-			2	
					. 19.	Facto	prize completely y	$^{\circ}-4xy+x$	$xy^3 - 4y$	
9.	If the	surface area of	t a sphere	is increased by 44%	b .	A.	$(\mathbf{x} + \mathbf{x}\mathbf{y})(\mathbf{y} + 2)$	(y - 2)		
	Find t	he percentage in	icrease in i	its diameter.		B.	(y+xy)(y+2)	(y - 2)		
	A.	44	B.	30		C.	y(1+x)(y+2)	(y-2)		
	C.	22	D.	20		D.	y(1 - x)(y + 2)(y + 2	y-2)		
10	0 1	:c. 1 1		U	20	TC	of3 0-1 · · ·)_] /1. ··	han fantens '	
10.	Simpl	$\frac{1}{(2\sqrt{2})}$		_	20.	IT ONE	$x^2 + 3^{-1} = 4^{-1}$	² , the ot	$\frac{1}{10000000000000000000000000000000000$	
	٨	(2-V3) 2/2	ъ			A. C	$X^{-} + 2 \cdot X - 4^{-1}$	В. П	$X^{-} - \angle X - 4^{+}$	
	A. C	215	D.	2., 13		L.	$X^{2} + 2^{3}X + 4^{3}$	D.	$X^{-} + 2^{-1}X^{-4}$	
	<i>с</i> ,	$-2 + \sqrt{3}$	D.	4 2,- ¥3	21	Feato	$rize 10^2 + 10ch$	$p^2 \perp 0h^2$		
11	Findni	n torms of a if I	$\alpha n + 2 \alpha$	a a - 3	21.	Λ	4a(a + 12a) = 0	$(2 + 90)^2$		
11.		$(3)^3$	$\log_3 p + 510$	$g_{3}q - 3$		A. P	4a(a-3b) + (2a+3b-a)(a-3b-a)(a+3b-a)(a+3b-a)(a+3b-a)(a+3b-a)(a+3b-a)(a+3b-a)(a+3b-a)(a+3b-a)(a+3b-a)(a+3b-a)(a+3b-a)(a+3b-a)(a+3b-a)(a+3b-a)(a+3b-a)(a+3b-a)(a+3b-a)(a+3b-a)(a+3b-a)(2a + 3b + a		
	A. ((3)	D. ((4) 3)		D. C	(2a+3b-c)(2a + 30 + c	()	
	C ((\mathbf{Y})) ^{1/3}		с. П	(2a - 30 - c)(2a - 4a(a - 3b) + 6)	$(-30 + 0)^2$		
	C. (ч 3) 🔎	(c)	,)		D.	$\pi a(a - 30) + ($	50 FC)		
	(,		ન (પ્	/	$\gamma\gamma$	What	are K and I room	ectively if	$f^{1/2} (3v - 4v)^2 - (8v^2)^2$	^ا
12	What	are the values of	of v which	satisfy the equation	<u>~~</u> .	kvv±	. I v ²)		(0x - 4x) = (0x)	т
14.	qy = A	$(3v) \perp 3 - 0$	y which	satisfy the equation		клу + Д	-12 9/2	R	-6 9	
	$\Delta = 4$	-1 and 0	R	_1 and 1		A. C	-1 <i>2</i> , <i>1</i> /2	D. D	-0, <i>y</i> 12 9/2	
	A. C	Land 3	D. П	0 and 1		С.	0, 7	D.	14, 1/4	
	с. -	- milded	<i>D</i> .	5 mild 1						
	•									

4,400pcm3 D.

Mathematics 1990

								\sim
1	Simplify $(4^{3/4} - 6^{1/4})$			12	Ifa-2 h	a = -2 and $c = -1/2$	5	
1.	$\frac{(4^{1/5} \text{ of } 1^{1/4})}{(4^{1/5} \text{ of } 1^{1/4})}$			12.	evaluat	$a^2 = 2 and c = 1/2$, the $(ab^2 - bc^2) (a^2c + bc^2)$	- abc)	
	A -7 ⁷ /	В	-2/7		A. C	0 B. -30	-28 D	_34
	C. $-10/21$	D.	10/21		Ċ.	50	D.	JT
2	The H C E of a^{2} by \perp	abx ² and a ² b	$-b^3$ is	13.	Y varies	inversely as x ² an	d X va V and	ries directly as Z^2 . find <i>Z</i> if <i>C</i> is a constant
2.	A. b	B.	a+b		A.	$Z^2y = C$	B.	$Y = CZ^2$
	C. $a(a+b)$	D.	$abx (a^2 - b^2)$		C.	$Y = CZ^2$	D.	Y=C
3.	Correct 241.34 (3 x 1	$(0^{-3})^2$ to 4 sign	ificant figures	14.	Find th	e value of r in ter	ms of p	and q in the following
	A. 0.0014	B.	0.001448		equation	on		
	C. 0.0022	D.	0.002172		P/2 = A. r =	$(\mathbf{r}/(\mathbf{r}+\mathbf{q}))$	В. р	q^2
4.	At what rate would	a sum of #10	00.00 deposited for 5		-	$\frac{1}{2 - p^2}$	2	- q ²
	years raise an intere	st of #7.50?	01/0/		C. r=	$\frac{p^2q^2}{2}$	D.	<u>p</u>
	A. $1^{1/2}$ % C. 15%	B. D.	2 ¹ / ₂ % 25%			2 - pq		q(2-p)
_				15.	If f(x - 4)	$= x^{2} + 2x + 3$, find	f(2)	
5.	Three children shar way that the first chi	ed a basket c ild took ¼ of	of mangoes in such a the mangoes and the		A. C.	6 В. 27 D.	11 51	
	second ³ / ₄ of the re	emainder. W	That fraction of the			-/	01	
	mangoes did the thin	d child take?		16.	Factori	$ze 9(x+y)^2 - 4(x-x)^2$	$(\mathbf{y})^2$	())
	A. 3/16	B.	12/16		A. C	(x+y)(5x+y)	B. D	$(x+y)^2$ 5(x+x)^2
	C. 9/10	D.	13/10	~	L.	(x+3y)(3x+y)	D.	J(x+y)
6.	Simplify and express	s in standard	form	17.	If $a^2 + b$	$p^2 = 16$ and $2ab = 7$	7 find a	ll the possible values of
	$(0.002/5 \times 0)$	0.00640/(0.025 8 8 v 1	5×0.08)		(a - b)	2 2	P	2.2
	C. 8.8×10^{-3} D.	0.0 X 1 8.8 X 1	0^{3}		A. C.	3,-3 1,-1	D.	2,-2
			>	7		7		- 7
7.	Three brothers in a b	usiness deal	share the profit at the $1/2$ of the profit of d	18.	Divide	$x^3 - 2x^2 - 5x + 6b^2$	y(x - 1))
	the second 2/3 of the	e remainder.	If the third received		A. C.	$x^{2}-x-0$ $x^{2}-7x+6$	D.	$x^{2}-5x-6$
	the remaining #12.0	000.00, how	much profit did they	19.	If $\mathbf{x} + =$	= 4, find the $x^2 + 1/2$	x	
	share?	_			A.	16	В.	14
	A. #60,000.00 C #48,000.00	B. D	#54,000.00 #42,000.00		C.	12	D.	9
	С. #48,000.00	D.	#42,000.00	20.	What r	nust be added to	$4x^2 - 4$	4 to make it a perfect
8.	Simplify $\sqrt{160r^2} + \sqrt{(160r^2)^2}$	$71r^4 + \sqrt{100r^3}$			square	?		_
	A 02	р	12 27		A. C	-1/x ²	B. D	$1/x^2$
	C. 13r	D.	$\sqrt{13r}$		ι.	1	D.	-1
				21.	Find th	e solution of the	equation	on
9.	Simplify $\sqrt{27} + 3/\sqrt{3}$	Ъ	16/2		$x - 8\sqrt{x}$	x + 15 = 0	D	2 5
	C. $3\sqrt{3}$	D.	4/V3 3√/4		C.	9,25	D.	-9,25
10		10 . 1	4 1 70	22	T T1 1	a ca :1	с ·	1. 11. 1
10.	A. 5	$\log_6 12 + \log_6 0$ B.	94 – Log ₆ /2 7776	22.	The ler xcm. (3	igths of the sides $(x-1)$ cm and $(3x + 1)$	of a rig l)cm. Fi	ind x
	C. Log ₆ 31	D.	(7776)6		A.	5	В.	7
11	Simplify (1				C.	8	D.	12
11.	$\frac{(1 + 1)}{x^{-1}} = \frac{1}{y^{-1}}$			23.	The per	rimeter of a rectang	gular la	wn is 24m, if the area of
	A. x/y	В.	xy		the law	n is 35m ² , how wi	de is th	ne lawn?
	C. y/x	D .	(xy) ⁻¹		A.	5m 12m	B.	7m 14m
					ι.	12111	D.	14111
		7						

25. Simplify
$$x = -x - x^2$$

 $(x_1y) = (x, y) = (x^2, y^2)$
 $A = \frac{x^2}{x^2 - y^2}$ $B = \frac{x}{x^2 - y^2}$
 $C = \frac{x}{x^2 - y^2}$ $D = \frac{x}{x^2 - y^2}$
C $\frac{x}{x^2 - y^2}$ $D = \frac{x}{x^2 - y^2}$
C $\frac{x}{x^2 - y^2}$ $D = \frac{x}{x^2 - y^2}$
C $\frac{x}{x^2 - y^2}$ $D = \frac{x}{x^2 - y^2}$
26. Given that $x^2 + y^2 + z^2 = 194$, calculate z if $x = 7$ and $y^2 = 3$
 $A = \sqrt{12}$ $B = 10$ $g^{2/3}$ $D = 10$ $g^{2/3}$
27. Find the sum of the first trenuly terms of the arithmetic
progression $1 - g = 1, 0 - g^{2/3}$ $1 - g^{2/3}$
28. Find the sum of the first 18 terms of the progression 3
 $A = \frac{2}{3}(2^{n-1})$ $B = \frac{3}{3}(2^{n-1})$
29. $A = \frac{2}{3}(2^{n-1})$ $B = \frac{3}{3}(2^{n-1})$
20. $A = \frac{1}{3}(2^{n-1})$ $B = \frac{3}{3}(2^{n-1})$
20. $A = \frac{1}{3}(2^{n-1})$ $B = \frac{3}{3}(2^{n-1})$
21. $A = \frac{1}{3}(2^{n-1})$ $B = \frac{3}{3}(2^{n-1})$
23. A = \frac{1}{3}(2^{n-1}) $B = \frac{3}{3}(2^{n-1})$
24. $A = \frac{1}{3}(2^{n-1})$ $B = \frac{3}{3}(2^{n-1})$
25. $A = \frac{1}{3}(2^{n-1})$ $B = \frac{3}{3}(2^{n-1})$
26. $A = \frac{1}{3}(2^{n-1})$ $B = \frac{3}{3}(2^{n-1})$
27. $A = \frac{1}{3}(2^{n-1})$ $B = \frac{3}{3}(2^{n-1})$
28. Find the length of a side of a rhombs where diagonals
 $a = \frac{1}{3}(2^{n-1})$ $B = \frac{1}{3}(2^{n-1})$
29. $A = \frac{1}{3}(2^{n-1})$ $B = \frac{1}{3}(2^{n-1})$
20. $A = \frac{1}{3}(2^{n-1})$ $B = \frac{1}{3}(2^{n-1})$
21. $A = \frac{1}{3}(2^{n-1})$ $B = \frac{1}{3}(2^{n-1})$
23. $A = \frac{1}{3}(2^{n-1})$ $B = \frac{1}{3}(2^{n-1})$
34. $A = \frac{1}{3}(2^{n-1})$ $B = \frac{1}{3}(2^{n-1})$
35. Find the length of a side of a rhombs where diagonals
 $a = \frac{1}{3}(2^{n-1})$ $B = \frac{1}{3}(2^{n-1})$
36. Find the length of a side of a rhombs where diagonals
 $A = \frac{1}{3}(2^{n-1})$ $B = \frac{1}{3}(2^{n-1})$
37. $A = \frac{1}{3}(2^{n$

Mathematics 1991

1.	Simplif	$\frac{1}{y} \frac{3^{1}}{_{3}} - \frac{1^{1}}{_{4}} \frac{x^{2}}{_{4}}$	$_{3} + 1^{2}/_{5}$	
	A.	217/30	́В.	39/10
	C.	41/10	D.	4 11/36

 If 2257 is the result of subtracting 4577 from 7056 in base n, find n. A. 8 B. 9

A.	8	В.	9
C.	10	D.	11

3. Find correct to 3 decimal places $\begin{pmatrix} \underline{1} & \div & \underline{1} \\ 0.05 & 5.005 & - & (0.05X2.05) \\ A. & 99.998 & B. & 98.999 \\ C. & 89.899 & D. & 9.998 \end{pmatrix}$

4.	Express	62/3 as a decimal c	orrect to 3	significant figures.
	A.	20.6	B.	20.667
	С.	20.67	D.	20.7

5. Factory P produces 20,000 bags of cement per day while factory Q produces 15,000 bags per day. If P reduces production by 5% and Q increases production by 5% determine the effective loss in the number of bags produced per day by the two factories.
A. 250 B. 750
C. 1000 D. 1250

Musa borrows #10.00 at 2% per month interest and repays #8.00 after 4 months. However much does he still owe?
A. #10.80 B. #10.67

C.

#2.67

187/8%

7. If 3 gallons of spirit containing 20% water are added to 5 gallons of another spirit containing 15% water, what percentage of the mixture is water? A. $2^{4/2}$ % B. $16^{7/2}$ %

 $18^{1}/_{8}\%$ D.

#2.80

C.

C.

- 8. What is the product of 27/5 (3)³ and (1/5)?
 A. 5 B. 3
 C. 1 D. 1/25
- 9. Simplify $2\log 2/5 \log 72/125 + \log 9$ A. $1 - 4\log 3$ B. $-1 + 2\log 3$ C. $-1 + 5\log 2$ D. $1 - 2\log 2$ 10. Rationalize $(2\sqrt{3} + 3\sqrt{2})/(3\sqrt{2} - 2\sqrt{3})$ A. $5 - 2\sqrt{6}$ B. $5 + 2\sqrt{6}$
 - C. $5\sqrt{3}$ D. 5
- 11. Simplify $(1/3 + \sqrt{5}) 1/3 \sqrt{5}$ A. $-1/2\sqrt{5}$ B. $1/2\sqrt{5}$ C. $-1/4\sqrt{5}$ D. 0
- 12. Multiply $(x^2-3x + 1)^2$ by (x a)A. $x^3 - (3 - a)x^2 + (1 + 3a)x - 1$ B. $x^3 - (3 - a)x^2 + 3ax - a$ C. $x^3 - (3 - a)x^2 + (1 + 3a) - a$ D. $x^3 + (3 - a)x^2 + (1 + 3a) - a$

- 13. Evaluate $(\underline{X}\underline{y}^2 - \underline{X}^2\underline{y})$ $(x^2 - xy)$ when x = -2 and y = 3-3 A. C. 3/5 D. A car travels from Calabar to Enugu, a distant of pkm 14. with an average speed of ukm per hour and continues to Benin, a distance of qkm, with an average speed of wkm per hour. Find its average speed from Calabar to Benin. A. (p+q)/(up+wq)B. u+w C. uw(p+q)/(wp+uq)D. (wp+uq)/(u+wq)15. If w varies inversely as uv/u + v and is equal to 8 when u = 2 and v = 6, find a relationship between u, v, w. upw = 16(u+t)B. 16ur = 3w(u+t)upw = 12(u+t)D. 12upw = u + r16. If $g(x = x^2 + 3x)$ find g(x + 1) - g(x)(x+2)B. 2(x+2)Α. (2x+1)D. (x+4)Factorize $m^3 - m^2 - m + 2$ 17. $(m^2+1)(m-2)$ A. B. (m+1)(m+1)(m+2)C. (m+1)(m+1)(m-2)D. $(m^2+2)(m-1)$ 18. Factorize $1 - (a - b)^2$ (1 - a - b)(1 - a - b) B. (1-a+b)(1+a-b)A. (1-a+b)(1-a+b) D. C. (1-a-b)(1+a-b)19. Which of the following is a factor of rs + tr - pt - ps? (s - p) A. (p - s)B. C. (r - p) D. (r+p)20. Find the two values of y which satisfy the simultaneous equation 3x + y = 8 $x^2 + xy = 6$ -1 and 5 B. -5 and 1 A. C. 1 and 5 D. 1 and 1 21. Find the range of values of x which satisfy the inequality (x/2 + x/3 + x/4) < 1x < 12/13 B. x < 13A. C. x<9 D. x < 13/1222. Find the positive number n, such that thrice it s square is equal to twelve times the number. 2 A. B. 1
 - C. 3 D. 4 Solve the equation (x - 2)(x - 3) = 12
- 23. Solve the equation (x 2)(x 3) = 12A. 2,3 B. 3,6 C. -1,6 D. 1,6

X

24.	Simplify $\frac{(\sqrt{1 + x} + \sqrt{x})}{(\sqrt{1 + x} - \sqrt{x})}$	34.	If the exterior angles of a pentagon are x^0 , $(x + 5)^0$, $(x + 10)^0$, $(x + 15)^0$ and $(x + 20)^0$, find x
	A. $1 - 2x - 2\sqrt{x(1+x)}$ B. $1 + 2x + 2\sqrt{x(1+x)}$ C. $\sqrt{x(1+x)}$ D. $1 + 2x - 2\sqrt{x(1+x)}$		A. 118° B. 72° C. 62° D. 36°
25.	Evaluate $x^2(x^2 - 1)^{1/2} - (x^2 - 1)^{1/2}$ A. $(x^2 - 1)^{1/2}$ B. $(x^2 - 1)$		use the figure below to answer questions 35 and 36 T
	C. $(x^2-1)^{-1}$ D. $(x^2-1)^{-1/2}$		
26.	Find the gradient of the line passing through the points (-2,0) and (0, -4) A 2 B -4		
	C2 D. 4		M
27.	At what value of x is the function $y = x^2 - 2x - 3$ minimum?		PMN and PQR are two secants of the circle MQTRN and PT is a tangent
	B1 C4	35.	If $PM = 5$ cm, $PN = 12$ cm and $PQ = 4.8$ cm, calculate the respective lengths of PR and PT in centimeters.
28	D. 4 What is the nth term of the progression 27.9.3 ?		A. $7.3,5.9$ B. $7.7,12.5$ C. $12.5,7.7$ D. $5.9,7.3,36$.
20.	A. $27(1/3)^{n-1}$ B. 3^{n+2} C. $27 + 18(n-1)$ D. $27 + 6(n-1)$		A. 40° B. 30° C. 25° D. 15°
29.	Find the sum of the 20 term in an arithmetic progression whose first term is 7 and last term is 117	37.	
	A.2480B.1240C.620D.124	,	
30.	PQ	×	y
			In the figure above, find the value of v
)	A. 28° B. 122° C. 150° D. 152°
	120°	38.	P
	In the figure above, find the value of x A. 130° B. 110° C. 100° D. 90°		\neq \downarrow \searrow s
31.	The angles of a quadrilateral are $5x - 30$, $4x + 60$, $60 - x$		680
	and $3x + 61$. find the smallest of these angles. A. $5x-30$ B. $4x+60$		
37	C. $60-x$ D. $3x+61$.		In the figure above, $PQ = PR = PS$ and $SRTY = 68^{\circ}$. find QPS. A 1360 P 1240
52.	diagonal A. $11\sqrt{3}$ cm B. 12 cm		A. 150 B. 124 C. 112^0 D. 68^0
	C. 12√2cm D. 13cm	39.	A flagstaff stands on the top of a vertical tower. A man standing 60m away from the tower observes that the
33.	One angle of a rhombus is 60° . the shorter of the two diagonals is 8cm long. Find the length of the longer		angles of elevation of the top and bottom of the flagstaff are 64° and 62° respectively. Find the length of a flagstaff.
	one A. $8\sqrt{3}$ B. $16/\sqrt{3}$ C. $5\sqrt{3}$ D. $10/\sqrt{3}$		A. $60(\tan 62^\circ - \tan 64^\circ)$ B. $60(\cot 64^\circ - \cot 62^\circ)$ C. $60(\cot 62^\circ - \cot 64^\circ)$
			D. $60(\tan 64^{\circ} - \tan 62^{\circ})$

- Simplify $\cos^2 x (\sec^2 x + \sec^2 x \tan^2 x)$ 40. Tan x A. B. Tan x sec x C. Sec² x D. $\operatorname{Cosec}^2 x$
- 41. If $\cos x = \sqrt{a/b}$, find $\operatorname{cosec} x$.

A. <u>b</u>		В.	b
√b-a			a
C. b	D.	√ b - a	
√ b - a		а	

- From a point Z, 60m, north of X, a man walks 60Ö3m 42. eastwards to another point Y. find the bearing of y from Х. A. 030° B. 045° C. 060° D. 090°
- 43. A surveyor walks 500m up a hill which slopes at an angle of 30°. calculate the vertical height through which he rises

is the area of **\UVW**? 64sq.cm B. A. 54sq.cm

2	50sq.cm	D.	10sq.cm

45. Find the total area of the surface of a solid cylinder whose base radius is 4cm and height is 5cm. A

A.	56pcm ²	В.	/2pcm ²
C.	96pcm ²	D.	192pcm ²

46.

47. 3% of a family's income is spent on electricity. 9% on food. 20% on transport, 11% on education and 7% on extended family. The angles subtended at the centre of the pie chart under education and food are respectively

76.8° and 25.2° B. 10.8° and 224.6° A. C. 112.4° and 72.0°

D. 39.6° and 212.4°

Use the following information to answer question 48 and 49.

No of defective						
per box	4	5	6	7	8	9
No . of boxes	2	7	17	10	8	6

Fifty boxes each of 50balls were inspected for the number which were defective. The following was the result The mean and the median of the distribution are

respectively		
A. 6.7,6	B.	6.7,6.5
C. 6,6.7	D.	6.5,6.7

48.

C.

49. Find the percentage of boxes containing at least 5 defective bolts each.

96	B.	94
92	D.	90

A crate of soft drinks contains 10bottles of Coca-cola, 8 of Fanta and 6 of Sprite. If one bottle s selected at random, what is the probability that it is NOT a Coca cola bottle?

A.	5/12	B.	1/3
C.	3⁄4	D.	7/1

Mathematics 1992

	1.	Find n i	$f 34_n = 1$	00112		11	1.	Factoriz	$e^{9}p^2 - q^2 + 6pr - q^2$	$9r^2$	
	Δ	5	R	6				A. B	(3p-3q+r)(3) (6p-3q+3r)(3)	p - q - 9r)
	A. C.	5 7	D.	8				D. C.	(3p - q + 3r)(3)	p - q - 4r (1 + q - 3r))
	0.		21	U				D.	(3p - q + 3r)(3)	p - q - 3r	
2.	The radi	us of a cir	cle is gi	ven as	5cm subject to an er	rror					
	of 0.1c	m. what is	s the per	centage	e error in the area of	the 12	2.	Solve	the equation $y - 1$	$1\sqrt{y+24}$	=0
	circle.	1/25		B	1/4			A. C	8,3 B. 64 D	64,9 0.8	
	C.	4		D.	25			С.	0,4 D.	9,-0	
3.	Evalua	ate Log _b a ⁿ	if b = 1/	'a ⁿ		13	3.	A mar partly	n invested a sum at 4%. If the total	of #280.0 interest is	0 partly at 59% an s #12.80 per annun
	٨	\mathbf{n}^2		P	n			find th	#14 00	d at 5%. \mathbf{P}	#120.00
	A. C.	11 1/n		D.	1/n			A. C	#140.00	D.	#120.00
	С.	1/11		D.	1/11			С.	11110.00	D.	1100.00
4.	What	s the valu	e of x sa	tisfying	g the equation $4^{2y}/4$	$x^{3x} = 14$	4.	If x + 1 i	s a factor of $x^3 + 3$	$x^2 + kx + 4$, find the value of k
	2?			P	1/2			A. 6	B.	-6	
	A. C	-2		B. D	-1/2			C.	8 D.	-8	
	С,	/2		D.	2	15	5.	Resolve	$(3/x^2 + x - 2)$ into	partial fra	ctions
5.	Simpli	fy <u>{(1.25</u>)	<u>x 10⁴) x (</u>	(2.0 x 1	<u>0-1)</u>			A <u>. 1</u>	- 1	B. <u>1</u>	1
			(6.25 x	x 10 ⁵			7	x-1	x+2	$\mathbf{x} + 2$	x - 1
	٨	4.0 - 10	-3 D	50.	10-2			C.	$\frac{1}{1} - \frac{1}{2} D.1$	$\frac{1}{2}$ + $\frac{1}{2}$	1
	A. C.	2.0×10^{-10}	г Б . г ¹ D .	5.0 x	(10^3)	1		X +	-1 x - 2 x -	-2 + x +	1
	С.	2.0 A 10	Δ.	0.01		16	5.	Find all	values of x satisfyi	ng the inec	$yuality - 11 \le 43x \le 2$
5.	Simplify	5√18-3√7	$72 + 4\sqrt{5}$	0				А.	$-5 \le x \le 18$	В.	$5 \le x \le 8$
	A.	17√4		B.	4√17			C.	$-8 \le x \le 5$	D	$-5 < x \le 8$
	C.	17\2		D.	12\\4	2	4		y ↑ 4		
7.	If $x = 3$ -	$\sqrt{3}$, find x ²	$^{2} + 36 / x$	2			/.		1 3	,	
	A.	9	B.	18							
	C.	24	D.	27	C					<u> </u>	\rightarrow_x
5	If w _	allenima	factors	f 1 1] a					-3 -2 -1 0 -1	1 / 2 3	
5.	IIX - 1 V =	all prime	factors	of 60} 1	the elements of $x \cap v$	and			-2		
	xÇyre	spectively	are.	or oo j, i		and			-3		
									I		
	A.	{2,4,3,5	5,11 and 1	1 {4}				T 1 1	. 1 1	C	2.1.6.1
	B. C	$\{4,3,5,1\}$	1 and 1	3,4} \				I he sk	c respectively	curve of y	$= ax^2 + bx + c$. find a
	С. D.	$\{2,3,11\$	1 and 1	{2}	'0			A.	1.04	B.	-2.24
	21	(_,0,0,1						C.	0,1,-4	D.	2,-2,-4
Э.	If $U = \{$	0,2,3,6,7,8	3,9,10} is	s the un	iversal set, $E = \{0, 4, 6\}$,8,}					
	and F =	$= \{ x: x^2 = 2 \}$	6 ,}, x is	odd}.Fi	ind (E C F)' where me	ans 18	8.	Find th	he sum of the infi	nity of the	following series. 3
	the co	nplement	or a set					2+4/3	3 + 8/9 + 16/27 + 1270	B	190
	A.	{0}		B.	U			А. С.	12/0	D. D.	9
	C.	C	D.	f	-				-		-
						19	Э.	What	is the nth term of t	he sequen	ce 2,6,12,20,?
10.	Make	the subje	$\operatorname{ct} \operatorname{of} \operatorname{the}$	e formu	la			A.	4n-2	B.	2(3n - 1)
	S A 1/a [u	$=$ ut + $\frac{1}{2}$	at- s)]	B 1/	$a [-u + \sqrt{(u^2 - 2as)}]$			Ċ,	$n^2 + n$	D.	$n^2 + 3n + 2$
	1 1 . 1/a [U	<u> </u>		D. 1/	u Lui (u - 2asj	20	Э.	For an a	arithmetic sequen	ce, the fir	st term is 2 and th
		+1/12 - 20		D 1/	$a \left[-u \pm \sqrt{(u^2 + 2as)}\right]$			comme	on difference is 3.	ind the su	m of the fist 11 terms
	C. 1/a [u	$\pm v(u + \underline{a})$	(3)	D. 1/							
	C. 1/a [u	$\pm v(u + 2a)$	13)	D. 1/							

A.	157	B.	187
C.	197	D.	200

21. If the binary operation * is defined by m*n = mn + m + n for any real number m and n, find the identity element under this operation.

A. e=1 B. e=-1C. e=-2 D. e=0

Use the matrices below to answer questions 22 and 23.

PP-T

PP

40

28

- 22. When P^T is the transpose of P, calculate $[P^T]$ when x = 0, y = 1 and z = 2A. 48 B. 24 C. -24 D. -48
 - C. –24 D.
- 23. PQ is equivalent to A PP^T B. C. QP D.

24.

26.

In the figure above, $TSP = 105^{\circ}$ and $PRQ = 20^{\circ}$, find PQR

- A. 130° B. 120° C. 75° D. 30°
- 25. If the angles of a quadrilateral are $(p + 10)^0$, $(p + 20)^0$ and $4p^0$, find p A. 63 B. C. 36 D.

In the figure above, PQR is a semicircle while PQ and QR are chords. QS is the perpendicular from Q to the diameter PR. What is the expression for QS?

- A. QS = PS.SRB. $QS = \sqrt{(PS.SR)}$
- C. $QS = \sqrt{2} \sqrt{(PS.SR)}$
- D. $QS = 1/\sqrt{2}\sqrt{(PS.SR)}$
- 27. Determine the distance on the earth's surface between two towns P(Lat. 60°N, Long. 20°E) and Q(Lat. 60°N, Long 25°W)

34. Given that q is an acute angle and $\sin q = m/n$, find $\cot q$.

A.
$$\sqrt{\frac{n^2 - m^2}{m}}$$
 B. $\sqrt{\frac{(n+m)(n-m)}{m}}$

C.
$$\sqrt{n2 - m2}$$
 D. $\sqrt{\frac{n}{n2 - m2}}$

Mathematics 1993

								2	7
1.	Change	71_{10} to base 8			12.	Which o	f the following is	a factor o	of
	A.	1078	B	106 ₈		15 + 7	$x - 2x^2?$		
	C.	71 ₈	D.	17 ₈		A. C	x-3	В. D	x+3 x+5
2.	Evaluat	e 3524/0.05 corr	ect to 3 sig	gnificant figures.		с.	A S		A+0
	А.	705	В.	70000	13.	Evalua	ite		
	C.	70480	D.	70500		٨	$(x+1/x+1)^2 - (x$	$-1/x-1)^2$	$(2/- + 2)^2$
3	If Q(x-1/2)	-3^{x^2} find the val	lue of v			A. C.	4x- 4	в. D.	$(2/x+2)^{2}$ 4(1+x)
5.	A.	$\frac{1}{2}$	B.	1		0.		21	.(1.1.)
	C.	2	D.	3	14.	Solve t	he following sim	ultaneous	s equations for x.
4	Solve fo	or v in the equation	on 10v X4	$5(2y-2) \times A(y-1) - 1$			$x^{2} + y - 5 = 0$ y - 7x + 3 = 0		
т.	A.	³ / ₄	В.	$\frac{2}{2}$		A. 💙	-2,4	B.	2,4
	C.	1	D.	5/4		C.	-1, 8	D.	1, -8
5	Simplif	$\frac{1}{2}$ 1/2 2 1/2 2			15	Solve	he following equ	ation	
5.	A.	4 4 1/3-2 - 1/3+2	B.	2/2	10.	Solver	(3x-2)(5x-4)=(3)	$(3x-2)^2$	
	C.	0	D.	-4		А,	- ³ / ₂ , 1	B.	1
6	16.0.1	. 1 x ² 4 41				С.	$^{2}/_{3}$, 1	D.	² / ₃ , 4/5
6.	If 2 log	$_{3}$ y+ $\log_{3}^{x^{2}} = 4$, th (4-log $^{x^{2}}/2$	en y 1s B	4/log x2	16.	Q 30°			
	C.	$\frac{2}{x}$	D.	$\pm \frac{9}{x}$					
_	a 1					\checkmark	2		
7.	Solve w	1thout using tabl	es 25)-log (1/2)		()		x° T	
	A.	3	B.	4			r° I	$2x^{\circ}$	
	C.	5	D.	8			P	1	
8	If #225	00 yields #27 00	in y vear	s simple interest		and v =	gure above represe = (x-1) (x-3). What	ents the gi	raphs of y= x (2-x) x-coordinates of p.
0.	at the ra	ate of 4% per annu	im, find x	s simple interest		q and 1	respectively?		, coordinates of p
	A.	3	B.	4		A.	1,3,2	B.	0,0,0
	C.	12	D.	27		C.	0,2,3	D.	1,2,3
				\sim	17.	If the f	function f is defin	ed by	
9.	v	\frown		\sim		f	$f(x+2)=2x^2+7x-10^2$	5, find f	(-1)
	^	Ň	Y			A. C	-10 4	B. D	-8 10
	(\square				C.	-	D.	10
					18.	Divide	the expression		
			Y			٨	$x^{3} + 7x^{2} + 7$	$x^3 + 72$	$x^{2} - x - 7$ by $-1 + x^{2}$
				Y		C.	-x +/x -x-/ X-7	D.	-x - 7x + 7 X+7
			Z						
					19.	Simpli	fy $1/n 1/a n/a a/a$	-	
	The sha	ided portion in th	e venn dia	igram above is		A.	1/p - 1/q - p/q - q/2 1/p - q	р В.	-1/p+q
	C.	XÇY°Ç Z	D.	XÇYÇZ°		C.	1/pq	D.	1/pq(p-q)
	. – .				20	C 1	a • a•.		
10.	If $\sqrt{x^2}$ +	-9 = x + 1, solve for 5	or x	1	20.	Solve	the inequality $v^2 - 3v^2$	18	
	A. C.	$\frac{3}{3}$	Б. D.	1		A.	-2 <y<6< td=""><td>В.</td><td>y<-3 or y>6</td></y<6<>	В.	y<-3 or y>6
			·			C.	y>-3 or y>6	D.	y<-3 or y<6
11.	Make x $1 + \alpha x^{/1}$	the subject of the $ax = p/c$	e relation		21	If vier	negative what is the	ie range o	f values of x within
	1+ax/1-A.	ax = p/q p+q/a(p-q)	B.	p-q/a(p+q)	<i>L</i> 1	which	iegative, wilat 18 th	ie range 0	a values of A within
	C.	p-q/apq	D.	pq/a(p-q)			x+1/3 > 1/x+3	_	
		2				A. C	3 < x < 4	B. D	-4 <x<-3< td=""></x<-3<>
		5				C.	-2<1<1	D.	-3<4<0

22 A man's initial salary is #540.00 a month and increases after each period of six months by #36.00 a month. Find his salary in the eighth month of the third year. 40.00 00

А.	#020.00	D.	#750.00
C.	#720.00	D.	#684.00

23. If k+1, 2k-1, 3k+1 are three consecutive terms of a geometric progression, find the possible values of the common ratio.

A.	0,8	В	-1, 5/3
C.	2,3	D.	1, -1

24. A binary operation * is defined on a set of real numbers by $x^*y = xy$ for all real values of x and y, if x*2 = x, find the possible values of x

	, .	1	
A. 0, 1			B. 1, 2
C. 2, 2			D. 0,2

PQRST is a regular pentagon and PQVU is a rectangle with U and V lying on TS and SR respectively as shown in the diagram above. Calculate TUV

A.	18^{0}	В.	54 ⁰
C.	90 ⁰	D.	108°

- 26. A regular polygon has 150° as the size of each interior angle. How many sides has the polygon? A. 12 **B**. 10 C. 9
- 27. Calculate the length, in cm, of the arc of the circle of diameter 8cm which subtends an angle of 22 2π A.

28.

C.

C.

 $^{2}/_{3}\pi$

 58^{0}

In the diagram above, PQRS is a circle with O as centre and PQ//RT if RTS = 32° , find PSQ A. 320

In the diagram above, $\frac{P}{P}$, PQR. = 34°, QRS= 73° and RS = RT. Find SRT 102° B. D. 141^{0} Т In the figure above, PT is a tangent to the circle at u and OU//RS. If TUR=35° and SRU = 50° find x

Β.

D.

 48^{0}

 42^{0}

	$/\mathrm{KS}$. If $10\mathrm{K}$ =33	and $SKO = 30$.	ппu л.
A .	95 ⁰	В.	85°
2.	50°	D.	35°

In the diagram above, QPS = SPR, PR = 9cm, PQ =4cm and OS=3cm. Find SR.

A.	6 ³ /4	В.	$3^{3}/_{8}$
C.	$4^{3}/_{8}$	D.	2 ² / ₃

The three sides of an isosceles triangle are of lengths x+3, 2x+3, 2x-3 respectively. Calculate x.

A.	0	В.	1
C.	3	D.	6

In the figure above, the line segment ST is tangent to the two circles at S and T. O and Q are the centres of the circles with OS = 5cm, QT = 2cm and OQ =14cm. Find ST.

12cm

7cm

42

47

In the figure above, the area of the square **PQRS** is 100cm². If the ratio of the area of the square **TUYS** to the area of the square XQVU is 1:16, find YR 6cm Β. 7cm A. C. D. 9cm 8cm

36.	Find	the radius of a	sphere w	hose surface	area is
	154cm	n^2 (π :	=22/7)		
	A.	7.00cm	В.	3.50cm	
	C.	3.00cm	D.	1.75cm	

37. Find the area of the sector of a circle with radius 3m if the angle of the sector is 60° 4.0m² $4.1m^{2}$ A. Β.

C.	$4.7m^{2}$	D.	5.0m ²	

- 38. The angle between latitudes 30°S and 13°N is 17^{0} A. Β. 33° 430 53° C. D.
- 39. If sin $\theta = \cos \theta$, find 0 between 0° and 360° . 450,2250 $135^{\circ}.315^{\circ}$ A. Β. C. 45°,315° D. 135° 224
- 40.

From the figure above, calculate **TH** in centimeters. 5/√3-1 A. $5/(\sqrt{3}+1)$ В. C. 5/√3 D. $\sqrt{3}/5$

If two angles of a triangle are 30° each and the longest 41. side is 10cm, calculate the length of each of the other sides.

Quantities in the proportions 1,4,6,7 are to be represented in a pie chart. Calculate the angle of the sector with proportion 7

Find the median of the observations in the table

1

36 - 40

above.			
A.	11.5	B.	12.5
C.	14.0	D.	14.5

48. A number is selected at random between 20 and 30 both numbers inclusive. Find the probability that the number is a prime

A.	² / ₁₁	В.	⁵ / ₁₁
C.	6/11 11	D.	⁸ / ₁₁

49. Calculate the standard deviation of the following data.

7, 8, 9, 10, 11, 12, 13. 2 A. C. 10

¹/₁₂

C.

B. D.

1/4

50. The chances of three independent event X, Y, Z occurring are $\frac{1}{2}$, $\frac{2}{3}$, $\frac{1}{4}$ respectively. What are the chances of y and z only occurring? ¹/₂₄ A. $^{1}/_{8}$

Mathematics 1994

1. Evaluate 10. Simplify $\frac{1}{3} \div \left[\frac{5}{7} \left(\frac{9}{10} - 1 + \frac{3}{4}\right)\right]$ (m - 2u)¹³/₈₄ B. ²⁸/₃₉ A. $(5m^2 - 5u^2)$ ³⁹/₂₈ ⁸⁴/₁₃ C. D. Β. 2/5A. C. D. u/5m + um - 2u/m + 5u2. Evaluate (0.36x 5.4 x 0.63) (4.2 x 9.0 x 2.4) correct to 2 significant figures 11. Factorize A. 0.013 B. 0.014 $a^2x - b^2y - b^2x + a^2y$ C. 0.14 0.13 D. A. (a - b)(x + y)B. (y - x)(a - b)(a + b)C. (x - y)(a - b)(a + b) D. (x + y)(a - b)(a + b)3. Evaluate $Log_{5}(0.04)$ $(Log_31\overline{8} - Log_32)$ 12. Find the values of p and q such that (x - 1) and (x -1 Β. A. 3) are factors of $px^3 + qx^2 + 11x - 6$ -1 $-2/_{3}$ C. $^{2}/_{3}$ D. A. -1,-6 Β. 1,-6 C. D. 1.6 6,-1 4. Without using tables, solve the equation $8x^{-2} = \frac{2}{25}$ 4 B. 6 A. 8 10 C. D. (3.0) $\sqrt{48} - \frac{9}{\sqrt{3}} + \sqrt{75}$ 5 Simply 5√3 B. 6√3 A. (0.-27) C. 8√3 D. 18√3 Given that "2 = 1.414, find without using tables 6. value of 1/", The equation of the graph above is 0.301 A. 0.141 Β. A. $y = (x - 3)^3$ Β. $y = (x + 3)^3$ C. 0.707 0.667 D. C. $y = x^3 - 27$ D. $y = -x^3 + 27$ 7. In a science class of 42 students, each offers at least 14. If a = 1, b = 3, solve for x in the equation one of Mathematics and Physics. If 22 students offer a/a - x = b/x - b²/₃ 4/3 3/2 Physics and 28 students offer Mathematics, find how A. Β. many students offer Physics only? C. D. 3⁄4 A. 6 B. C. 12 D. 14 15. Solve for r in the following equation 1/(r-1) + 2/(r+1) = 3/r8. Given that for sets A and B, in a universal set E, $A \subseteq$ A. 3 Β. 4 B then C. 5 D. 6 $A \cap (A \cap B)$ ' is A. Α Ø 16. Find P if x - 3/(1 - x)(x + 2) = P/(1 - x) + Q/(x + 2)Σ C. В -²/₃ B. -⁵/3 A. ²/₃ 5/ D. C. 9. Solve for x if $25^x + 3(5^x)$ = 4 1 or -4 B. 0 A. 17. Find the range of values of x for which 1/x > 2 is C. D. -4 or 0 true A. $x < \frac{1}{2}$ Β. $x < 0 \text{ or } x > \frac{1}{2}$ C. $0 < x < \frac{1}{2}$ D. 1 < x < 2

50. In a survey, it was observed that 20 students read newspapers and 35 read novels. If 40 of the students read either newspaper or novels, what is the probability of the students who read both newspapers and novel?

 $^{1}/_{2}$

³/₈

A.

С

Mathematic

15.

16.

17.

18

20.

- 1. Calculate 3310, - 1442, A. 1313, B. 2113, C. 4302, D. 1103,
- 2. Convert 3.1415926 to 5 decimal places A. 3.14160 B. 3.14159 C. 0.31415 D. 3.14200
- 3. The length of a notebook 15cm, was measured as 16.8cm. calculate the percentage error to 2 significant figures. A. 12.00% B. 11.00% C. 10.71% D. 0.12%
- A worker's present salary is #24,000 per annum. His 4. annual increment is 10% of his basic salary. What would be his annual salary at the beginning of the third year? A. #28,800 B. #29,040 C. #31,200 D. #31,944
- 5. Express the product of 0.0014 and 0.011 in standard form. A. 1.54×10^2 B. 1.54×10^3 C. 1.54×10^4 D. 1.54×10^5
- 6. Evaluate $(81^{3/4} - 27^{1/3})$ 3 x 2³ A. 27 B. 1 C. 1/3 D. 1/8
- 7. Find the value of $(16)^{3/2} + \log_{10} 0.0001 + \log_2 32$ A. 0.065 B. 0.650 C. 6.500 D. 65.00
- 8. Simplify $\sqrt{12} - \sqrt{3}$ $\sqrt{12} + \sqrt{3}$ A. 1/3 B. 0 C. 9/15 D. 1

12.

- 9. Four members of a school first eleven cricket team are also members of the first fourteen rugby team. How many boys play for at least one of the two teams? A. 25 B. 21 C. 16 D. 3
- 10. If $S = (x : x^2 = 9, x > 4)$, then S is equal to A. 0 B. {0} C. f D. {f}
- 11. If x - 1 and x + 1 are both factors of the equation $x^3 + 1$ $px^3 + qx + 6 = 0$, evaluate p and q A. -6, -1 B. 6, 1 C. -1 D. 6, -6
 - Find a positive value of p if the equation $2x^2 px + p$ leaves a remainder 6 when added A. 1 B. 2 C. 3 D. 4
- Find r in terms of K, Q and S if $s = 2r\sqrt{(Q\pi T+K)}$ 13. r^2 r^2 k B А. k 4πr²Q $2\pi r^2 Q$ Q \mathbf{r}^2 C. r^2 $2\pi r^2Q$ 4πr2Q
- The graph of $f(x) = x^2 5x + 6$ crosses the x-axis at the 14. points 🔪

S	199	5				
	A. (-6. 0)(-1, 0)		B. (-3.0)	(-2, 0)	
	C. (-6, 0))(1,0)	ア・	D. (3,0)	D.(2,0)	(3,0)
	Factoriz	e comple	etely the e	voression	n	
	1 detoi12	$abx^2 + 6$	6y – 3ax -	-2byx	1	
	A. (ax –	- 2y)(bx -	3)	B. (bx +	- 3)(2y - a	ix)
	C. (bx +	- 3)(ax –	2y)	D. (ax –	- 2y) (ax -	· D)
	Solve th	e followi	ing inequ	ality (x -	3)(x - 4)	≤0
	1	А.	$3 \le x \le 4$	1	В.	3 < x < 4
		C.	$3 \le x <$	4	D.	$3 < x \leq 4$
	The 4 th t	erm of ar	A. Pis 1	3cm while	e the 10 th	term is 31.
	find the	31 st term				
	А.	175		B.	85	
	С.	64		D.	45	
	Simplif	v x'	7 - 1			
		$x^3 +$	$\frac{2}{2x^2 - x}$ -	2		
	A.	1/x + 2		B.	x - 1/x -	+ 1
	C.	x - 1/x	+ 2	D.	1/x - 2	
	Express	$5x - \frac{1}{2}$	x - 2)(x -	3) in part	ial fracti	on
	A.	2/x - 2	-3/x - 3	B.	2/x - 2 - 2	+3/x - 3
	C.	2/x - 3	– 3x –2	D.	5/x - 3 - 3	+ 4/x - 2
			↑ <i>y</i>			
			$ \land$		/	
					/	
		/ -1	ľ	1 2	л	

Use the graph of the curve y = f(x) above to solve the inequality f(x) > 0.

A.	$-1 \le x \le 1, x > 2$	B.	$x \le -1, 1, < x > 2$
C.	$x \le -1, 1 \le x \le 2$	D.	$x \le 2, -1 \le x \le 1$

21. Which of the following binary operation is commutative in a set of integers?

> A. a*b = a + 2bΒ. a*b = a + b - abC. $a*b = a^2 + b$ D. a*b = a(b+1)/2

> > D.

2

22. If $a^*b = +\sqrt{ab}$, Evaluate $2^*(12^*27)$ 9 12 A. B. 2

23. Find the sum to infinity of the following sequence $1 0/10 (0/10)^{2} (0/10)^{3}$

$1, 9/10, (9/10)^2, (9/10)^2$				
A.	1/10	B.	9/10	
C.	10/9	D.	10	

24. Find the value of K if 2, 1, 1 2, 1 k 1, 3 - 1 = 23

> A. 1

6

C.

B.

Age in years	13	14	15	16	17
No . of students	3	10	30	42	15

The frequency distribution above shows the ages of students in a secondary school. In a pie chart constructed to represent the data, the angle corresponding to the 15 years-old is

A. 27º B. 30º C. 54º D. 108º

43.

The pie chart above shows the distribution of students in a secondary school class. If 30 students offered French, how many offered C.R.K? A. 25 B. 15 C. 10 D. 8

44. The mean and the range of the set of numbers 0.20,1.00,0.90,1.40,0.80,0.80,1.20,and 1.10 are m and r respectively. Find m + r
A. 1.11 B. 1.65 C. 1.85 D. 2.45

45.	Class	1-3	4 - 6	7 - 9
	Frequency	5	8	5

Find the standard deviation of the data using the table above A .5 B. $\sqrt{6}$ C. 5/3 D. $\sqrt{5}$

1

3

850

46. The variance of the scores 1,2,3,4,5 is A. 1.2 B. 1.4 C. 2.0 D. 3.0

. 1.2 B. 1.4 C. 2.0 D. 3.0 Use the table below to answer questions 47 and 48

		and dress	
Class Interval	Frequency	Class Boudaries	Class Mid-point
1.5-1.9	2	1.45-1.95	1.7
2.0-2.4	1	1.95-2.45	2.2
2.5-2.9	4	2.45-2.95	2.7
3.0-3.4	15	2.95-3.45	3.2
3.5-3.9	10	3.45-3.95	3.7
4.0-4.4	5	3.95-4.45	4.2
4.5-4.9	3	4.45-4.95	4.7

- 47. find the mode of the distribution A. 3.2 B. 3.4 C. 3.7 D. 4.2
- 48. The median of the distribution is A. 4.0 B. 3.5 C. 3.2 D. 3.0
- 49. Let P be a probability function on set S, where S = (a_1, a_2, a_3, a_4) find P (a_1) if P $(a_2) = P(a_3) = 1/6$ and P (a_4) 1/5 A. 1/10 B 2/3 C. 1/3 D. 3/10

A die has four of its faces coloured while and the remaining two coloured black . What is the probability that when the die is thrown two consecutive times, the top face will be white in both cases? A. 2/3 B. 1/9 C. 4/9 D. 1/36

Mathematics 1997

8.

9

1. If $(1PO3)_4 = 115_{10}$, find P A. 0 B. C. 2 D.

C.

2. Evaluate 64.764² – 35.236² correct to 3 significant figures A. 2960 B 2950

2860 D.

- 3.
 Find the value of (0.006)³ + (0.004)³ in standard form.

 A.
 2.8 X 10⁻⁹
 B
 2.8 X 10⁻⁸

 C.
 2.8 X 10⁻⁷
 D.
 2.8 X 10⁻⁶
- 4. Given that $\log_a 2 = 0.693$ and $\log_a 3 = 1.097$, find $\log_a 13.5$ A. 1.404 B. 1.790
 - C. 2.598 D. 2.790
- 5. Simplify $\log_2 96 2\log_2 6$ A. $2 - \log_2 3$ B. $3 - \log_2 3$ C. $\log_3 3 - 3$ D. $\log_3 3 - 2$

6. If
$$8^{x/2} = [2^{3/8}][4^{3/4}]$$
, find x
A. $3/8$ B. $^{3/4}$
C. $4/5$ D. $5/4$

7. Simplify $(2\sqrt{3}+3\sqrt{5})/(3\sqrt{5}-2\sqrt{3})$

A.	19 + 4''15/11	B.	19 + 4"15/19
C.	19 + 2''15/11	D.	19 + 2"15/19

Find the simple interest rate per cent per annum at which #1000 accumulates to #1240 in 3 years.

A.	6%	В.	8%
C.	10%	D.	12%

If U = {S,P,L,E,N,D,O,U,R} X = {S,P,E,N,D} Y = {P,N,O,U,R}

Find $X \cap (Y'UZ)$.

A.	{P,O,U,R}	В.	$\{S,P,D,R\}$
C.	{P,N,D}	D.	$\{N,D,U\}$

10. A survey of 100 students in an institution shows that 80 students speak Hausa and 20 students Igbo, while only 9 students speaks both languages. How many students neither Hausa nor Igbo?

А.	0	В.	9
C.	11	D.	20

11. If the function $(x) = x^3 + 2x^2 + qx - 6$ is divisible by x + 1, find q. A. -5 B. -2

A.	-5	B.	-2
C.	2	D.	5

12. Solve the simultaneous equations

- $\frac{2}{x} \frac{3}{y} = 2, \frac{4}{x} + \frac{3}{y} = 10$ x = $\frac{3}{2}, y = \frac{1}{2}$ B. x = $-\frac{1}{2}, y = -\frac{3}{2}$ D. A. $x = \frac{1}{2}, y = \frac{3}{2}$
- С. $x = \frac{1}{2}, y = -\frac{3}{2}$
- Find the minimum value of $x^2 3x + 2$ for all real 13. values of x.
 - -¹/₄ $-\frac{1}{2}$ A. В. D. 1/2 C. 1⁄4
- 14. Make f the subject of the formula
 - $gt^2/gv t^2$ $gv - t^2/gt^2$ Β. A. v/t^{1/2 - 1/g} C. D. $gv/t^2 - g$
- What value of g will make the expression $4x^2 18xy$ 15. – g a perfect square? B. $9y^{2}/4$ A. 9 C. $81y^2$ D. $81y^{2}/4$
- Find the value of K if ${}^{5+2r/}_{(r+1)(r-2)}$ expressed in partial fraction is ${}^{K/}_{r-2} + {}^{L/}_{r+1}$, where K and L are constants. 16. A. 3 Β. 2 C. 1 D. -1

Find the range of values of x which satisfies the 18. inequality $12x^2 < x + 1$ A. -1/4 < x < 1/3Β. $\frac{1}{4} < x < 1/3$ C. -1/3 < x < 1/4D. -1/4 < x < -1/3

- 19. S_n is the sum of the first n terms of a series given by $S_n = n^2 - 1$. find the nth term. 4n + 1B. A. 4n – 1 C. 2n + 1D. 2n – 1
- The nth term of a sequence is given by 3^{1-n} , find the 20. sum of the first three terms of the sequence. 13/ A. В 1

C.
$$\frac{1}{3}$$

21. Two binary operations * and Ä are defined as m*n = mn - n - 1 and $m \ddot{A} n = mn + n - 2$ for all real numbers m, n. find the values of $3\ddot{A}$ (4*5). 60 A. Β. 57 C. 54 D. 42

D.

(x) = (-1)

(y) B.

12

(8)

22. If xy = x + y - xy, find x, when $(x^{*}2) + (x^{*}3) = 68$ 24 A. 22 В. C. -12 -21 D 23. Determines x + y if

C.

Find the non-zero positive value of x which satisfies 24. the equation

Find the volume of the prism above.

Let f(x) = 2x + 4 and g(x) = 6x + 7 where g(x) > 0. 17. solve the inequality $\frac{f(x)}{g(x)} < 1$ Β. $x < -\frac{3}{4}$ x > -4/3A. C. x > -3/4D. x > -12

A.	990 cm ³	B.	880 cm ³
С.	550 cm ³	D.	495 cm ³

31. A cone with the sector angle of 45^o is cut out of a circle of radius r cm. find the base radius of the cone.

A.	r/16cm	В.	r/8cm
C.	r/4cm	D.	r/2cm

32. A point P moves so that it is equidistant from points L and M. if LM is 16cm, find the distance of P from LM when P is 10cm from L.
A. 12cm B. 10cm

	120111	2.	104111
C.	8cm	D.	6cm

33. The angle between the positive horizontal axis and a given line is 135° . find the equation of the line if it passes through the point (2, 3).

A.	x - y = 1	В.	x + y = 1
C.	x + y = 5	D	x - y = 5

- 34. Find the distance between the point Q(4, 3) and the point common to the lines 2x y = 4 and x + y = 2A. $3\sqrt{10}$ B. $3\sqrt{5}$ C. $\sqrt{26}$ D. $\sqrt{13}$
- 35. The angle of elevation of a building from a measuring instrument placed on the ground is 30° . if the building is 40m high, how far is the instrument from the foot of the building? A. $20\sqrt{3}m$ B. $40\sqrt{3}m$ C. $20\sqrt{3}m$ D. $40\sqrt{3}m$

36. In a triangle XYZ, if \langle XYZ is 60°, XY = 3cm and YZ = 4cm, calculate the length of the side XZ. A. "23cm B. "13cm C. 2"5cm D. 2"3cm

37.

In the figure above, XYZ is a triangle with XY = 5cm, XZ = 2cm and XZ is produced to E making the angle YZE = 150° . if the angle XYZ = è, calculate the value of the sin è.

- 38. Differentiate $\frac{6x^3-5x^2+1}{3x^2}$ A. $2+2/3x^3$ B. 2+1/6xC. $2-2/3x^3$ D. 2-1/6x
- 39. $d/dx \cos(3x^2 2x)$ is equal to A. $-\sin(6x-2)$ B. $-\sin(3x^2-2x)$ C. $(6x-2)\sin(3x^2-2x)$ D. $(6x-2)\sin(3x^2-2x)$
- 40. Find the gradient of the curve $y = 2\sqrt{x} 1/x$ at the point x = 1A. 0 B. 1 C. 2 D. 3

41. Integrate $1/x + \cos x$ with respect to x. $-1/x^2 + \sin x + k$ A. B. 1nx + sin x + kC. 1nx - sin x + k $-1/x^2 - \sin x + k$ 42. If $y = x(x^4 + x^2 + 1)$, evaluate dyx 11/1211/16 A. C. 5/6 0 43. Housing 69 60° ranspor 50° Other **61**^c Meal

The pie chart above shows the income of a civil servant in a month. If his monthly income is #6000, find his monthly basic salary.

In an examination, the result of a certain school is as shown in the histogram above. How many candidates did the school present?

A.	12	В.	16
C.	18	D.	19

45.

Age	20	25	30	35	40	45
No . of students	3	5	1	1	2	3

Find the median age of the frequency distribution in the table above

A.	20	В.	25
C.	30	D.	35

46 The following are the scores of ten students in a test of 20 marks; 15,16,17,13,16,8,5,16,19,17. what is the modal score?

A.	13	В.	15
C.	16	D.	19

47. Find the standard deviation of the following data - 5,-4,-3,-2,-1,0,1,2,3,4,5

A.	2	В.	3
C.	$\sqrt{10}$	D.	$\sqrt{11}$

48. Find the difference between the range and the variance of the following set of numbers 4,9,6,3,2,8,10,5,6,7 where $d^2 = 60$.

A.	2	В.	3
C.	4	D.	6

49.	In a b and 1 what or a b	asket of fruits, 3 oranges. If o is the probabili banana?	there are 6 one fruit is ty that the f	grapes, 11 bananas chosen at random, ruit is either a grape	50.	A nun both n numbe A	nber is selected at a umbers inclusive. ers is an even num 5/11	random Find th ber.	the between 10 and 20, e probability that the $\frac{1}{2}$
	А. С. б	17/30 5/30 D.	B. 5/30	11/30		C.	6/11	D.	7/10
					4	10	0.0	\frown	-
				Mathema	atics	s 19	98		
1.	If 101	$1 + X_{-} = 25$	solve for X			In the	venn diagram abo	ove. the	shaded region is
	A.	14 14	B.	20		A.	(PÇQ)ÈR	В.	(PÇQ)ÇR
	C.	24	D.	25		C.	(PÇQ')ÇR	D.	(PÇQ')ÇR
2.	Evalu places	ate [1/0.03 ÷ 1 s	/0.024] -1,	correct to 2 decimal	10.	When - 1), it	the expression prices that a remainder 2	$n^2 + qm^2$ and w	+ 1 is divided by (m when divided by (m +
	A. C	3.76 0.94	B. D	1.25		1) the Λ	remainder is 4. fir	nd p and B	d q respectively
	C.	0.94	D.	0.75		A. C.	3, -2	D.	-1, 2 -2, 3
3.	If $b^3 =$	$= a^{-3}$ and $c^{1/3} = a^{-1/2}$	a ^{1/2} b, expre	ss in terms of a $e^{1/2}$	11	E			
	A. C.	$a^{3/2}$	в. D.	$a^{-2/3}$	11.	Factor A.	(r - 2q)(2r - p)	+ 2pq B.	(r - q)(r + p)
	0.		2.			C.	(r - q)(r - 2p)	D.	(2r - q)(r + p) (2r - q)(r + p)
4.	Given $1 + 1$	that $Log_4(y - 1)$	$(1/2) + Log_4(1/2)$	$2x = 1$ and $Log_2 (y + y) = 1$	12	Solve	the equation \sqrt{k}	$\pi_{\rm v}$	1 - 0
	1) + 1 A.	2, 3	B.	3, 2	12.	A.	3/2	B.	$\frac{1}{2/3}$
	C.	-2, -3	D.	-3, -2	7	C.	4/9	D.	9/4
5.	Find	the value of K i	if K/"3 + "2	2 = "3 - 2	13.	Find t	he range of values	of m f	or which the roots of
	A.	3	B.	2	×	the eq	uation $3x^2 - 3mx$	$+(m^2 - m^2)$	(m - 3) = 0
	C.	"3	D.	2		A.	-1 <m<7 -3<m<9< td=""><td>B. D</td><td>-2<m<6< td=""></m<6<></td></m<9<></m<7 	B. D	-2 <m<6< td=""></m<6<>
6.	A ma	rket woman sel	lls oils in c	ylindrical tins 10cm		С.	-5<11<7	D.	
	deep a	and 6cm diamet	ter at #15.0	0 each. If she bought	14.	Make	a/x the subject of $x + a/x$	the form $a = r$	nula
	for #5	50.00, how mu	ch did she	make by selling all	1	A.	m - 1/m + 1	-a - 1 B.	1 + m/1 - m
	the oi	1?	P	1105.00		C.	1 - m/1 + m	D.	$m \ + \ 1/m \ - \ 1$
	A. C	#62.50 #31.00	B. D	#35.00	15	Divid	$2x^3 + 11x^2 + 17x^3$	+ 6 hv	2x + 1
	С.	101100	D.	1120.00	15.	A.	$x^2 + 5x + 6$	B.	$2x^{2} + 5x + 6$
7.	A mar	n is paid r naira a rata for overt	a per hour f	or normal work and		C.	$2x^2 - 5x + 6$	D.	$x^2 - 5x + 6$
	which	includes q h	ours of ov	ertime, what is his	16.	Expre	ss in partial fractio	ons	
	weekl	y earning in na	ira?	(25			$\frac{11x+2}{2}$		
	A. C.	r(35 + q) q(35r + r)	В. D.	q(35r - q) r(35r - q)		А	$6x^2 - x - 1$ 1/3x - 1 + 3/2x + 3/	1 B	3/3x + 1 - 1/2x - 1
	0.	q(001 · 1)	2.			C.	3/3x - 1 - 1/2x + 3	1 D.	1/3x + 1 + 3/2x - 1
8.	Giver sets P PÈ(O	the universal = {1,2,3,4,} Q ÈR).	set $U = \{1 = \{3,4,5\}$ a	,2,3,4,5,6,} and the nd R = {2,4,6}. Find	17.	If x is for wh	a positive real num	ıber, fin	nd the range of values
	А.	{4}	В.	{1,2,3,4}			1/3x +	1/2 > 1/2	4x
	C.	{1,2,3,5,6}	D.	{1,2,3,4,5,6}		А. С.	x> - 1/6 0 <x<4< td=""><td>B. D.</td><td>x>0 0<x<1 6<="" td=""></x<1></td></x<4<>	B. D.	x>0 0 <x<1 6<="" td=""></x<1>
9.		P/ \		Q	10		v		
					18.				
			$\langle \rangle$			(0	, 3)	→ _x	
		T				The sł	naded area above r	epresen	its
			R			A. x≥($0, 3y + 2x \ge 6$	B. x	$\geq 0, y \geq 3, 3x + 2y \geq 6$
		2				C. x≥	$2, y \ge 0, 3x + 2y \le 6$	D. x≥	$0, y \ge 0, 3x + 2y \ge 6$

an ari	1, 2p ithme	– 10 ,1 – tic progr	4p ² are the ression, find	consecutive terms of the possible values	f s	In the $= 130$	diagram above, ⁰ . find the angle	PQ//ST and e marked x.	$1 \text{DPQR} = 120^\circ, \text{E}$
of p.				-		A.	50°	В.	65°
A.	-4,	2	B.	-2, 4/11		C.	70°	D.	80°
	-1	1/4, 2	D.	5, -3			D		0
The s	sum o	f the fir	rst three te	rms of a geometric	27.				べ
progr	ression	ı is half	f its sum to	o infinity. Find the	e		1		
positi	ve cor	nmon ra	tion of the p	rogression.					
\ .	1/4		B.	1/2		T	10cm	Ś	8cm R
2.	1/3	"3	D.	1/3"2		Ta tha	Gauss also F		
Γ	0					is a st	raight line If t	QSI is a pa he area of	\sqrt{ORS} is 20 cm ²
ļ	0	p	q r	S		thear	ea of the trape	zium PORT	
	Р	r	p r	р		A.	35cm ²	В.	65cm ²
	a	р	q r	s		C.	_70cm ²	D.	140cm ²
	r	r	r	r			X		
	1		r		28.				
L	S	Ч	s r	q				\backslash	
		_							
he 1d	entity	element	with respect	to the multiplication	1			/K	
showi A	n in th	e table al	bove 1s	a			402		
1. ~	p r		D. D	q		(1	Т	Q	
<i>~</i> •	1		D.	5		TO is	tangent to circ	ele XYTR	$/YXT = 32^{0}$
Гhe b	inary	operatio	n * is define	d by $x^*y = xy - y - x$	C 🔰	∠RT($Q = 40^{\circ}$. find \angle	YTR.	,
or al	l real	values x	and y x*3 =	= 2 * x, find x.		A.	1080	B.	121^{0}
4.	-1		B.	0		C.	140°	D.	148°
2.	1		D.	5					
					29.	A cho	ord of a circle ra	adius Ö3cm	subtends an an
The d	leterm	inant of a	matrix	x, 1, 0		60° or	the circumfere	ence of the c	circle. Find the l
				1-x, 2, 3		of the	chord.	п	2/2
n tor	ma of	v ic		1, 1**, 4		A. C	$\sqrt{3/2}$ cm	B. D	3/2 cm
	-31 -31	$x_{18}^{2} = 17$	B	$-3x^2 + 9x - 1$		C.	v5 cm	D.	5 011
1. T	-3x ²	$\frac{2}{2} + 17$	D.	$3x^2 - 9x + 5$	30.	A cyli	indrical drum o	of diameter	56 cm contains
2.	UN	1 17	Б.	SR JRTS	50.	litres	of oil when ful	1. Find the	height of the dru
Let I=	= 1 0	P=2 3	Q= u, 4 +	u V	/	centir	neters.		C
	0 1	4 5	-2v,	v		A.	12.5	В.	25.0
e 2 x	x 2 ma	trices su	ch that PQ=	1. find (u,v)		C.	45.0	D.	50.0
\ .	(-5	/2, -1)	В.	(-5/2, 3/2)	31.	The l	ocus of all poir	nts at a dist	ance 8 cm from
2.	(-5	6,1)	D.	(5/2, 2/3)		point	N passes throu	igh point T	and S. if S is
			т	\sim		equid	istant from T a	nd N , find	the area of tria
	_	- c				$\frac{SIN}{\Lambda}$	$11/2 \text{ cm}^2$	D	$16\sqrt{2}$ cm ²
	$\left(\right)$	\rightarrow	30°			A. C	$4 v 3 cm^2$	ש. ה	64 cm^2
_		35%				C.	520111	D.	
Р	5	///"		U	32.	If the	distance betwe	een the poir	nts (x, 3) and (-:
	$\mathbf{\mathbf{N}}$			-		is 5. f	find x	· r ···	() -) ()
	Q					A.	6.0	B.	2.5
				1		C.	√ 6	D.	√3
n the	e diagi	am abov	ve, PR is a d	iameter of the circle	e 33	The n	nidpoint of the	segment o	f the line $y = 4x$
'QRS	S. PST	and QR?	Г are straigh	t lined. Find Đ QSR		which	n lies between t	the x-axis a	ind the y-axis is
÷	200	, 				A.	(-3/2, 3/2)	B.	(-2/3, 3/2)
\ .	25	' 🦨				C.	(3/8, 3/2)	D.	(-3/8, 3/2)
4. 3.	201	·			24	C al-	the acception		
A. 3. 2.	30	_			54.	Solve	e the equation	v _ cin v -	$-1/\cos x$ sinv
А. З. С. О.	30 ⁰ 35 ⁰	R					008	ол ⊤ 5111 X =	$-1/\cos x - \sin x$
4. 3. 2.).	30 ⁰ 35 ⁰	R				for ve	lues of y such	that $0 < v$	$< 2\pi$
А. З. Э.	30 ⁰ 35 ⁰	\mathbf{R}				for va A	the subscript $\pi/2$ $3\pi/2$	that $0 \le x <$	< 2π Β. π/3 2π/3
А. 3. Э.	30 ⁰ 35 ⁰ 120	R		n o		for va A. C.	flues of x such $\pi/2, 3\pi/2$ $0, \pi/3$	that $0 \le x < D$.	< 2π B. π/3, 2π/3 0, π
A. B. C. D.	30 ⁰ 35 ⁰ 120	R	13	0°		for va A. C.	llues of x such $\pi/2, 3\pi/2$ 0, $\pi/3$	that $0 \le x < D$.	< 2π B. π/3, 2π/3 0, π

In the diagram above, QTR is a straight line and \angle PQT = 30° . find the sine of \angle PTR. A. 8/15 Β. 2/3C. 3⁄4 D. 15/16

- For what value of x does 6 sin $(2x 25)^0$ attain its 36. maximum value in the range $0^{\circ} \le x \le 180^{\circ}$? $12^{1}/_{2}$ A. Β. $32^{1}/_{2}$
 - C. 57¹/₂ D. 147¹/2
- 37. From the top of a vertical mast 150m high, two huts on the same ground level are observed. One due east and the other due west of the mast. Their angles of depression are 60° and 45° respectively. Find the distance between the huts.

A.	$150 (1 + \sqrt{3})m$	В.	$50(3+\sqrt{3})m$
C.	150√3m	D.	50/√3m

If $y = 243 (4x + 5)^{-2}$, find dy/dx when x = 138. -8/3 B. 3/8 A. C. 9/8 D. -8/9

39. Differentiate $x/\cos x$ with respect to x. $1 + \sec^2 x$ A. $1 + x \sec x \tan x$ B.

C. $\cos x + x \tan x$ D. $\sec x + x \sec x \tan x$

π-2

24

Evaluate $\pi_2(\sec^2 x - \tan^2 x)dx$ 40. A. $\pi/2$

B.

- C. $\pi/3$ D. $\pi + 2$ 41. Find the equation of the curve which passes through the point (2, 5) and whose gradient at any point is given by 6x - 5 A. $6x^2 - 5x + 5$ $6x^2 + 5x$ Β. $3x^2 - 5x - 5$ $3x^2 - 5x +$ C. D.
- 42. If m and n are the mean and median respectively of the set of numbers 2,3,9,7,6,7,8,5 and m + 2n to the nearest whole number.

distribution.

Find the variance of the numbers K, K + 1, K + 2. 44.

47.

45.

46.

The pie chart above shows the monthly expenditure of a public servant. The monthly expenditure on housing is twice that of school fees. How much does the worker spend on housing if his monthly income is #7.200?

	#1000	B.	#2000
	#3000	D.	#4000
100000 88 77 65 44 32 2 1		5 6 7 8	9 10 Marks

The bar chart above shows the distribution of marks scored by 60 pupils in a test in which the maximum score was 10. if the pass mark was 5, what percentage of the pupils failed the test?

A.	59.4%	В.	50.0%
C.	41.7%	D.	25.0%

49. In a recent zonal championship games involving 10teams, teams X and Y were given Probabilities 2/ 5 and 1/3 respectively of wining the gold in the football event. What is the probability that either team will win the gold?

A.	2/15	В.	7/15
C.	11/15	D.	13/15

50. If x, y can take values from the set $\{1,2,3,4,\}$, find the probability that the product of x and y is not greater than 6.

A.	5/8	В.	5/16
C.	1/2	D.	3/8

Mathematics 1999

12. If $(a^2b^3c)/a^{-1}b^4c^5$ 1. What is the value of P + 2q? A. 5/2B. -5/4 C. -25/4 D. -10Find the value of x if $\sqrt{2}/(x + \sqrt{2}) = 1/(x - \sqrt{2})$ 2. $3\sqrt{2} + 4$ $3\sqrt{2} - 4$ A. Β. $3 - 2\sqrt{2}$ C. D. $4 + 2\sqrt{2}$ A trader bought 100 oranges at 5 for #1.20,20 oranges 3. got spoilt and the remaining were sold at 4 for #1.50. find the percentage gain or loss Α. 30% gain Β. 25% gain C. 30% loss D. 25% loss If $U = \{1, 2, 3, 4, 5, 6\}, P = \{3, 4, 5\}, Q = \{2, 4, 6\}$ 4. and $R = \{1, 2, 3, 4\}$, list elements of (PÈQ'CR). A. $\{1, 2, 3, 4, 5, 6\}$ Β. $\{1, 2, 3, 4\}$ C. {1} D. Æ Divide 2434, by 42, 5. B. A. 236 35 52 C. D. 55 If $2_{0} \times (Y3)_{0} = 3_{5} (Y3)_{0}$, find the value of Y 6. 4 Β. 3 Α. C. 2 D. 1 Simplify $\sqrt{(0.0023 \times 750)/(0.00345) \times 1.25}$ 7. 15 B. 20 A. 75 C. 40 D. 8. If $\log_{\circ} 10 = x$, evaluate $\log_{\circ} 5$ in terms of x. $^{1}/_{2}x$ B. X - 1/4A. С. $x - \frac{1}{3}$ D. $x - \frac{1}{2}$ 18. 9. A group of market women sell at least one of yam, plantain and maize. 12 of them sell maize, 10 sell vam and 14 sell plantain. 5 sell plantain and maize, 4 sell yam and maize, 2 sell yam and plantain only while 3 sell all the three items. How many women are in the group? A. 25 B. C. 18 D. 10. and Q + P = (7, 2)Given that Q = (6, 0)(6, 8) (4, 5)evaluate /Q + 2P/90 A. Β. 96 102 C. D. 120 A binary operation * is defined by a*b = ab + b for 11.

any real number a and b. if the identity element is zero, find the inverse of 2 under this operation

its common ratio. Find the sum of the first two terms of the progression if its sum to infinity is 8 8/5 A. 8/3 C. 72/25 56/9 Tope bought x oranges at #5.00 each and some 13. mangoes at #4.00 each. If she bought twice as many mangoes as oranges and spent at least #and at most #, find the range of the value of x A. $4 \le x \le 5$ B. $5 \le x \le 8$ C. $5 \le x \le 10$ D. $8 \le x \le 10$ 14. If m*n = m/n - n/m, for m,n E R, evaluate -3*4A. 25/12 B. -7/12C. D. 25/12 7/12 Find the matrix T if ST = I where S = (-1, 1)15. (1, -2)and I is the identity matrix. (-2, 1) B. (-2, -1) (-1, 1)(-1, -1)(-1, -1) D. (-1, -1) (01, -1)(0, 1) Divide $4x^3 - 3x + 1$ by 2x - 116.

The first term of a geometrical progression is twice

 $2x^2 - x + 1$ $2x^2 - x - 1$ B. A. C. $2x^2 + x + 1$ $2x^2 + x - 1$ D.

Three consecutive positive integers k, l and m are such that $l^2 = 3(k + m)$. find the value of m.

The shaded portion in the graph above is represented by

 $y + x - x^{3}0, y - x \pounds 0$ B. $y - x \pounds 0, y - x \pounds 0$ A. $y + x - x^3 \pm 0, y + x^3 0$ D. $y - x + x^3 \pm 0, y + x \pm 0$ C.

19. Factorize completely

$x^{2} + 2x^{2}$	$y + y^2 + 3x + 3y - 18$	
A.	(x+y+6)(x+y-3) B.	(x - y - 6)(x - y + 3)
C.	(x - y + 6)(x - y - 3)	

20. The sum of two members is twice their difference. If the difference of the numbers is P, find the larger of the two numbers.

A.	p/2	В.	3p/2
C.	5p/2	D.	3p

- 21. Express $1/x^3 - 1$ B. A.
 - C. D.

39.	What is the variable A. 6t c	the derivative of e? $\cos(3t-5)$	$f^{2} t^{2} sin (3t - 5)$ B. 2dt sin ((i) with respects to the $3t-5)-3t^2\cos(3t-5)$		The gr in the	ades of 36 stud	lents in a cla ove. How	ass test are a many stude	as shown ents had
	D. $2t si$	$\ln(3t-5) + 3t^2 \cos^2 (3t-5) + t^2 \sin^2 (3$	3t			A.	ent? 7 B. 9 D	8		
40.	Find th a minin	e value of x for num value.	which the f	unction $y = x^3 - x$ has	47.	No of stu Marks	dents 2 2 1 0 1 2	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	40 10 25 1 6 7 8	15 20 9 10
	A. C.	-√3 √3/3	В. D.	$-\sqrt{3/2}$ $\sqrt{3}$			>			
41	Three b	ovs play a game	e a luck in v	which their respective		The m	arks scored by Find the media	students in a	a test are giv	en in the
	chance	s of wining an lity that one and	re $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{2}$ only of the	and $\frac{1}{4}$. What is the boys wins the game?		A. C.	7 5	в. D.	6 4	
	A.	1/24	B.	1/12					-	
	C.	11/24	D.	23/24	48.	A stud	ent calculated	the mean of	f 5 numbers	as 45, 3.
42.	A num	ber is selected a	at random :	from 0 to 20. what is		while total w	rechecking his vas short by 20.:	working, h 5. what is th	e discovered e correct me	that his the
	the pro	bability that the	e number is	an odd prime?		5 num	bers?			
	Α.	8/21	B.	1/3		А.	24.8	B.	41.2	
	C.	2/7	D.	5/21		C.	49.4	D.	65.8	
43.	If ⁶ C _r / ⁶ I	$P_{r} = 1/6$, find th	ne value of	r.	49.	The se	ctorial allocatio	ons to variou	s ministries	in a state
	A.	l z	B.	3		budget	are as follows	:		
	C.	5	D.	6		Agricu	$-\#_2$	25 000 000.0)U 00	
4.4	TC (1		f (1	(. f		Educat	$- \frac{\pi}{2}$	20 000 000 .	00	
44.	If the si	$\frac{1}{2}$ $\frac{1}$	on of the se	et of numbers 3, 6, X,	X	wome	$n \text{ affairs} - \pi c$	5 000 000.0	00	
	7, 5, 18	$\sqrt{2}$, find the let	ast possible	2^{2}		Unducti	erce and		00	
	A. C	2	B. D	3	1 .	Indust	$\frac{1}{2}$	20 000 000.(10 .is informs	tion the
	C.	4	D.	0		In a p	one chart to re	epresent in	iis informa	tion the
15	How m	any two diait n	umbana aa	he formed from the		corresj		o agricultur	450	
45.	HOW III	any two digit n	umbers car	i be formed from the		A. C	23° 500	B. D	45°	
	aights 0	1, 1, 2, 11 a digit	can be rep	eated and no number		C.	50°	D.	90°	
	may be		D	12	50	Thom	oon of four nun	abora ia 5 an	d the mean	deviation
	A. C.	4 16	В. D.	20	50.	is 3. fi	nd the fourth nu	imber if the	mean deviati	ion of the
10						first th	ree numbers is	52. D	10	
46.		Pass 120°	7			A.	6	B. D	10	
		Jery Good	Gedit	\mathcal{A}		C.	11	D.	17	
				Mathema	atic	s 200)()			
				~		C	-2/5.1	D.	2. 3/5	
1.	Let P =	$\{1,2,u,v,w,x\}$		()		6.	2,0,1	21	2,070	
	R =	{2,3,u,v,w,5,6	,y}		4.	In a y	outh club with	n 94 membe	ers, 60 like	modern
	and R =	=(2,3,4,v,x,y)				music	and 50 like lik	e traditional	l music. The	e number
	-		-			of mer	mbers who lik	e both trad	itional and	modern
	Determ	nine (P - Q) \cap	R.			music	is three time	s who do n	ot like any	type of
	A.	{1, x}	B.	$\{\mathbf{x}, \mathbf{y}\}$		music	. How many r	nembers lil	ke only one	e type of
	C.	{x}	D.	φ		music	?		-	
						А.	8	В.	24	
2.	If the p	opulation of a	town was	240000 in January		C.	62	D.	86	
	1998 a	nd it increased	by 2% ea	ch year, what would						
	be the p	population of t	he town in	January 2000?	5.	Evalua	ate (2.813 x 10) <u>-3</u>) x 1.063		
	A.	480 000	В.	249 696			5.637 x 1	0-2		
	C.	249 600	D.	244 800		reduci	ng each numb	er to two sig	nificant fio	ures and
						leavin	g vour answer	s in two sig	nificant fig	ures.
3.	If $2\sqrt{3}$	- √2/√3 + 2√2 :	$= m + n\sqrt{6}$			A.	0.056	B	0.055	
	Find th	e values of m	and n resp	ectively		C	0.054	D.	0.54	
	А.	1, -2	В.	-2, 1		с.		ν.	0.01	
	4									

6. A man wishes to keep some money in a savings deposit at 25% compound interest so that after 3 years he can buy a car for #150,000. how much does he need to deposit now?

A.	#112,000.50.	B.	#96,000.00
C.	#85,714.28	D.	#76,800.00

- 7. If $314_{10} 256_7 = 340_x$, find x A. 2^{n+1} B. 2^{n-1} C. 4 D. $\frac{1}{4}$
- 8. Audu bought an article for #50 000 and sold it to Femi at a loss of x%. Femi later sold the article to Oche at a profit of 40%. If Femi made a profit of #10,000, find the value of x.

A.	60	В.	50
C.	40	D.	20

- 9. Simplify $3^{(2n+1)} 4^{(2n-1)}/2^{(n+1)} 2^{n}$ A. 2^{n+1} B. 2^{n-1} C. 4 D. $\frac{1}{4}$
- 10. If $P344_6 23P2_6 = 2PP2_6$, find the value of digit P. A. 2 B. 3 C. 4 D. 5
- 11. Evaluate $5^{-3\log 52} \ge 2^{2\log 23}$ A. 8 B. $1^{1/8}$ C. 2/5 D. 1/8
- 12. A binary operation * is defined by a * b = a^b. if a * 2 = 2 -a, find the possible values of a.
 A. 1, -1 B. 1, 2 C. 2, -2 D. 1, -2

13. The 3^{rd} term of an A. P. is 4x - 2y and the 9^{th} term is 10x - 8y. find the common difference. A. 19x - 17y B. 8x - 4yC. x - y D. 2x

- 14. Find the inverse of p under the binary operation * by p * q = p + q pq, where p and q are real numbers and zero is the identity.
 - A. p B. p-1C. p/p-1 D. p/p+1
- 15. A matrix $\mathbf{P}_{(a, b)}^{(a, b)}$ is such that $\mathbf{P}^{T} = \mathbf{p}$, where \mathbf{P}^{T} is the transpose of P, if $\mathbf{b} = 1$, then P is A. (0, 1) B. (0, 1)

A.

$$(0, 1)$$
 B.
 $(0, 1)$
 $(1, 0)$
 $(-1, 0)$

C.
$$(0, 1)$$
 D. $(1, 1)$
 $(1, 1)$ (-1,0)

- 16. Evaluate $(1/2 \frac{1}{4} + \frac{1}{8} \frac{1}{16} + \dots) 1$ A. 2/3 B. 0 C. -2/3 D. -1
- 17. The solution of the simultaneous inequalities 2x 2£ y and 2y 2 £ x is represent by

C.

 80°

D.

 50°

44.	No.	1	2	3 4	5 6		The cuthe age	mulativ es of stu	e freque dents in	ency cu a scho	rve ab ool. Wł	ove rep nich are	resents e group
	Frequen	ev 30	43	54 40	41 32		do 70%	of the	students	s belon	g?		
	Frequen	cy 30	43	34 40	41 32		А.	15.5 -	18.5	B.	15.	5–19.5	5
							C.	16.5 –	19.5	D.	17	5 - 20.	5
	A dice is	rolled 2	240 tim	es and th	e result depicte	ed in							
	the table	above	. If a p	ie char	t is constructe	ed to 47.	The var	riance o	f x, 2x, 2	3x 4x a	nd 5x is	5	
	represent	the dat	a, the a	ngle corr	responding to 4	is	A.	x√2		В.	$2x^2$	2	
	A. 1	0^{0}		B.	16 ⁰		C.	\mathbf{X}^2		D.	3x		
	C. 4	0^{0}		D.	60°				~				
						48.	Find th	e sum o	f the ran	ge and	the mo	de of th	e set of
45.	If $U = \{x\}$: x is ai	n intege	er and {1	$\leq x \leq 20$		numbe	rs 10, 5,	10, 9, 8	7,7,1	0, 8, 10	, 8, 4, 6	5, 9, 10,
	$E_{1} = \{x : x\}$	x is a m	nultiple	of 3}	,		9, 10, 9	0.7.10.	6, 5				
	$E_{2}^{1} = \{x : x\}$	x is a m	ultiple	of 4			A.	16	,	B.	14		
	And an in	teger is	s picked	, l at rand	om from U, find	d the	C.	12		D.	10		
	probabilit	v that i	it is not	in E.	, .								
	A. 3/	4		B.	3/10	49.	In how	many y	vays can	a dele	gation	of 3 be	chosen
	$C \frac{1}{4}$	4		D	1/2.0	.,,	from at	nong 5 i	nen and	3 wom	en if at	least o	ne man
	. ,			21	1/20		at least	one wo	man mu	st be in	cluded'	7	
46							A	15	inun mu	B	28	•	
10.							C	30		D.	20 45		
							С.	50		D.	75		
	Cumulati	ive				50							-
	frequecy					50.	Interva	l 10-12	13-15	16-18	19-20	21-23	
	10	,					(years)						
	8	30					No. Of		14	15	10	_	1
	(50 —					NO. OI	6	14	15	10	5	
	,	10 H		\mid			Pupils						
	-	•• —					The tel	lachor	h or vo	the free		distrib	tion of
	2	20					I ne tat	ne abov	e snows	the free	luency		
		0					the age	s (in ye	ars) of p	Supits 1	n a cer	an sec	
		15.5 1	6.5 17	.5 18.5	19.5 20.5		school.	what pe	ercentag	e of the	total nu	imber o	r pupils
					Age(in years)		1s over	15 year	s but les	s than 2	21 year	s?	
							A.	35%		B.	45	%	
							C.	50%		D.	60	%	
					Matha	motio	, 200	1					
					Maine	matics	<i>s 2</i> 00						
1.	Find the p	rincipa	l which	amounts	s to #5,000 at si1	mple 6.	If $y/2 =$	x, eval	uate				
	interest in	15 year	's at 2%	per ann	um		(x^{3}/v^{3})	$+\frac{1}{2} + \frac{1}{2}$	(1/2 - x)	$(2^{2}/v^{2})$			
	A. #	5000		В.	#4900		A.	5/16		B.	5/8	3	
	C. #	4800		D.	#4700	<	C.	5/4		D.	5/2		
							с.	5/1		р.	0/1		
2.	A car de	ealer	bought	a seco	ond-hand car	for 7	Simpli	fv (3√64	a ³)- ³				
	#250,000	.00 and	l spent	#70 000	.00 refurbishin	ig it.	Δ	89 89	u)	в	/19		
	He then s	old the	e car fo	r #400 (000.00. what is	s the	C	0a 1//a		D. D	-πα 1//	9	
	percentag	e gain?					C.	1/ 4 a		D.	1/4	ra	
	A. 2	0%		B.	25%	0	Factor	$\pi a 4 x^2$	$0x^2 + 2$	$0_{\rm W} + 25$			
	C. 3	2%		D.	60%	0.	ractor	2e + x = (2m - 2)	-9y + 2y	$\mathbf{D}\mathbf{X} + 2\mathbf{J}$	()	5)(2	(0.1 ± 5)
							A.	(2x-5)	y)(2x + 5)	у) D. 2- 5)	(28	+3)(2x)	-9y+3)
3.	Evaluate	21.053	47 - 1	6324 x	0.43, to 3 dec	imal	C.	(2x - 3)	y + 5)(2x)	- 3y - 3)			
01	places	_11000	.,		0110, 10 0 000		D.	(2x - 3)	(2x + 3)	y+5)			
	A 2	0 351		В	20 352	0	TO		2				
	C 2	0.980		D	20.981	9.	If tow g	graphs y	$= px^2 a$	nd $y = 2$	$2X^{2} - 11$	ntersec	x = x = x
	C. 2	0.700		<i>D</i> .	20.901		2, find	the valu	e of p ir	1 terms	ofq		
Λ	Evaluata ($(0, 14)^2$	v 0 275	7(0.02)	correct to 3 dec	imal	A.	(7 + q))/8	В.	(8	– q)/2	
ч.	Diagons	0.14) 2	x 0.273)	//(0.02)		iiiiai	C.	(q - 8)	/7	D.	7 /	(q –1)	
		023		B	0.030								
	л. 0 С	200		D.	0.039	10.	Solve t	he equa	tions: m	$n^2 + n^2 =$	29;m ·	+ n = 7	
	U . 0	.308		D.	0.338		A.	(5, 2) ai	nd (5, 3)	B.	(5,	3) and (3	3,5)
5	Circuit d	• • • •		da 1	121	(m ²	C.	(2, 3) ai	nd (3, 5)	D.	(2,	5) and (5	5,2)
э.	Given tha	ι p = Ι	$+ \sqrt{2} ai$	a q = 1	- v2, evaluate	(p ² –							
	q-//2pq			ъ		11.	Divide	$a^{3x} - 26$	$a^{2x} + 15c$	6a ^x – 21	6 by		
	A2	$2(2 + \sqrt{2})$	Z)	В.	$2(2 + \sqrt{2})$		$a^{2x} - 24$	$a^{x} + 108$	3				
	C2	2742	-	D.	2\2								

A.	a ^x - 18	B.	$a^x - 6$
C.	$a^x - 2$	D.	a ^x + 2

- 12. Find the integral values of x and y satisfying the inequality $3y + 5x \pm 15$, given that y > 0, y < 3 and x > 0.
 - A. (1,1),(2,1),(1,3) B (1,1),(1,2),(1,3) C. (1,1),(1,2),(2,1) D. (1,1),(3,1),(2,2)

13.

Triangle SPT is the solution of the linear inequalities

- A. $2y x 2 \le 0, y + 2x + 2 \le 0, \ge 0, x \le 0$
- B. $2y x 2 \le 0, y + 2x + 2 \le 0, \le 0$
- C. $2y x 2 \le 0, y + 2x + 2 \le 0, \le 0, x \le -1$

D. $-2y < x \le 2 \le 0, y + 2x + 2 \le 0, \le 0$

- 14.. The sixth term of an arithmetic progression is half of its twelfth term. The first term is equal to
 - A. half of the common difference
 - B. double of the common difference
 - C. the common difference D. zero
- A man saves #100.00 in his first year of work and each year saves #20.00 more than in the preceding year. In how many years will he save #580.00
 A. 20 years
 B. 29 years
 - C. 58 years D. 100 years
- 16. An operation * is defined on the set of real numbers by a*b = a + b + 1. if the identity elements is -1, find the inverse of the element 2 under. A. -4 B. -2

17

C. 0 4 D. k l 8 m k l k т l l k m k l т т

The identity element with respect to the multiplication shown in the table above is A. k B. 1

D.

0

18. Given that matrix $k = \begin{pmatrix} 2, 1 \\ (3, 4) \end{pmatrix}$ the matrix $k^2 + k + 1$, where I is the 2 x 2 identity matrix, is

19. Evaluate $\begin{array}{cccc} -1 & -1 & -1 \\ 3 & 1 & 1 \\ 1 & 2 & 1 \end{array}$

20.

21.

23.

In the figure above, PQR is a straight line segment, PQ = QT. Triangle PQT is an isosceles triangle, < SRQ is 75° and < QPT = 25°. calculate the value of < RST.

А.	250	В.	45°
C.	50°	D.	55°

A cylindrical tank has a capacity of 3080m³, what is the depth of the tank if the diameter of its base is 14m?

A.	20m	В.	22m
C.	23m	D.	25m

- 24. A sector of a circle of radius 7.2 cm which subtends an angle 300^o at the centre is used to form a cone. What is the radius of the base of the cone?
 - A.
 6cm
 B.
 7cm

 C.
 8cm
 D.
 9cm
- 25. The chord ST of a circle is equal to the radius, r of the circle. Find the length of arc ST.
 - A. $\pi r/2$ B. $\pi r/3$ C. $\pi r/6$ D. $\pi r/12$
- 26. A point P moves such that it is equidistant from the points Q and R. find QR when PR = 8cm and $< PRQ = 30^{\circ}$

A.	4cm	В.	4√3cm
C.	8cm	D.	8√3cm

27. Find the locus of a point which moves such that its distance from the line y = 4 is a constant, k.

A.	y = 4 + k	В.	y = k - 4
C.	$y = k \pm 4$	D.	$y = 4 \pm k$

28. A straight line makes an angle of 30° with the positive x-axis and cuts the y-axis at y = 5. find the equation of the straight line.

	A.	$\sqrt{3}y = x + 5y\sqrt{3}$	B.	$\sqrt{3y} = -x + 5\sqrt{3}$	40.	
	C.	$\mathbf{y} = \mathbf{x} + 5$	D.	y = 1/10x + 5		No.of cars8
29.	P(-6, 1	l) and Q(6, 6) are t	the two e	ends of the diameter		
	of a gi	ven circle. Calcula	ate the ra	adius		
	A.	3.5 units	B. D	6.5 units		
	C.	7.0 units	D.	13.0 units		THE PART OF COLOR OF CARS
30.	Find t	he value of p if the	line joi	ning (p, 4) and (6, -		The bar chart above shows different colours of cars
	2) is p	erpendicular to the	e line joi	ining $(2, p)$ and $(-1, $		passing a particular point of a certain street in two
	3)	0	р	2		minutes. What fraction of the total number of cars is
	A. C	0	В. D	3 C		yellow?
	C.	4	D.	0		A. 4/15 B. 1/5
31.	The be	earing of P and Q	from a c	ommon point N are		C. 3/25 D. 2/25
	020° a	and 300° respecti	vely. If	P and Q are also	41	
	equidi	stant from N, find	the bear	ring of P from Q.	41	No. of taxis 8
	A.	320°	B.	280°		7
	C.	070°	D.	040^{0}		5
~~		^				3
32.		θ				
		t/ \	<u>t</u>			
			\mathbf{i}			No. of passengers
						The histogram above shows the distribution of
		$\sqrt{3t}$				passengers in taxis of a certain motor park. How many
	Find t	he value of q in the	e diagra	m above.		taxis have more than 4 passenger?
	A.	300	B.	60°		A. 14 B. 15
	C.	100°	D.	120°		C. 16 D. 17
	-				×	Using the table below to answer questions 42 and
33.	Differ	entiate $(2x + 5)^2(x + 5)^2($	- 4) wit	h respect to x $(2 + 5)(2 + 12)$		43
	A. C	(2X+5)(6X-11) 4(2x+5)(x-4)	B. D	(2X+5)(2X-13) A(2x+5)(4x-2)		
	C.	4(2x+3)(x-4)	D.	4(2x+3)(4x-3)		Score 4 7 8 11 13 8
34.	If y =	x sin x, find dy/dz	x when a	$x = \pi/2$	7	Frequency 3 5 2 7 2 1
	Ă.	π/2	B.	1	12	
	C.	-1	D.	π/-2	42.	Λ 25 B Λ
						C = 64 = D = 121
35.	If the	gradient of the cur	ve			
	y = 2k	$x^{2} + x + 1$ at $x = 1$	find k		43.	The mean score is
	A. C		B. D	2		A. 11.0 B. 9.5
	C.	5	D.	4		C. 8.7 D. 7.0
36.	Find t	he rate of change	of the vo	olume V of a sphere		
	with r	espect to its radius	s r when	r=1	44.	Find the range of $1/6$, $1/3$, $3/2$, $2/3$, $8/9$ and $4/3$
	A.	4π	B.	8π		A. $4/3$ B. $1/6$
	C.	12π	D.	24π		C. 5/6 D. 74
27	$\mathbf{E}_{in} \neq 0$	ha dimanaiana afu	horac	agle of greatest and	45.	Find the variance of 2, 6, 8, 6, 2 and 6
57.	rinu u which	has a fixed parim	ne rectai	igle of greatest area		A. $\sqrt{5}$ B. $\sqrt{6}$
		Square of sides n/	ater p. 1 B	Square of sides p/2		C. 5 D. 6
	C.	Square of sides p	, D.	Square of sides 2p		•
	2.	~			46.	
		۸				frequency 50
38.	Evalu	ate $\int 2(2x - 3)^{2/3} dx$	Y			
	A.	2x - 3 + k	B.	2(2x - 3) + k		
	C.	$6/5(2x-3)^{5/3}+k$	D.	$3/5(2x-3)^{5/3}+k$		
39.	Find t	he area bounded b	y the cu	rves		
	y = 4	$-X^{2}$	р	102/		
	A.	$10^{\circ}/_{\circ}$ sq. units	В.	10^{2} , sq. units		Masses (Kg)

y = $4 - x^2$ A. $10^{1/3}$ sq. units C. $20^{1/3}$ sq. units $10^{2}/_{3}$ sq. units $20^{2}/_{3}$ sq. units B. D.

The graph above shows the cumulative frequency of the distribution of masses of fertilizer for 48 workers in one institution. Which of the following gives the interquartile range?

30

35

110

80

A.	$Q_{3} - Q_{1}$	B.	$Q_3 - Q_2$
C.	$Q_{2}^{'} - Q_{1}^{'}$	D.	$\frac{1}{2}(Q_3 - Q_1)$

47. Find the number of ways of selecting 8 subjects from 12 subjects for an examination.

A.	498	В.	496
C.	495	D.	490

If ${}^{6}P_{r} = 6$, find the value of ${}^{6}P_{r+1}$ 48. A. 15 Β. C. 33 D.

49.

50.

Colour	Blue	Black	Yellow	White	Brown
No . of beads	1	2	4	5	3

The distribution of colors of beads in a bowl is given above. What is the probability that a bead selected at random will be blue or white?

A.	1/15	В.	1/3
C.	2/5	D.	7/15

perpendicular to the line $y + \frac{1}{4}x - 7 =$

Teams P and Q are involved in a game of football. What is the probability that the game ends in a draw? 1⁄4 1/3A. Β. C. 1/2 D. 2/3

Mathematics 2002

8.

10.

14.

0

-8

4

A trader bought goats for #4 000 each. He sold them 1. for #180 000 at a loss of 25%. How many goats did he buy? 36 A. B. 45

C. 50 60 D.

Simp	lify $(\sqrt{0.7} + \sqrt{7})$	$(0)^{2}$	
Α.	217.7	В.	168.7
C.	84.7	D.	70.7

3. Evaluate

A.

C.

2.

(0.21 x	0.072 x 0.0054)/ (0.006 x	1.68 x 0.063)
corr	ect to four signif	icant figur	es.	
	0.1006	ъ	0 1005	

А.	0.1286	В.	0.1285
C.	0.01286	D.	0.01285 🦨

4. In a school, 220 students offer Biology or Mathematics or both. 125 offer Biology and 110 Mathematics. How many offer Biology but not Mathematics? Β.

D.

125 95

- Simplify 52.4 5.7 3.45 1.75 5. 42.2 A. Β. C. 41.5 D. 41.4
- Without using tables, evaluate 6. $(343)^{1/3} \ge (0.14)^{-1} \ge (25)^{1/2}$ A. 7 C. 10 D.
- 7.

In the diagram below are two concentric circles of radii r and R respectively with centre O. if r = 2/5 R, express the area of the shaded portion in terms of π and R.

A bucket is 12cm in diameter at the top, 8cm in diameter at the bottom and 4cm deep. Calculates its volume. $304\pi cm^{3}/3$ A. $144\pi \text{cm}^3$ Β. C. $72\pi \text{cm}^3$ D. $128\pi cm^{3}/$

Find the value of & if the line 2y - &x + 4 = 0 is

Β.

D.

-4

8

In the diagram below, XZ is the diameter of the circle XYZW, with centre O and radius 15/2cm. If XY = 12cm, find the area of the triangle XYZ.

A.	75cm ²	В.	54cm ²
C.	45cm ²	D.	27cm^2

11. Find the coordinate of the midpoint of x and y intercepts of the line 2y = 4x - 8

A.	(-1, -2)	В.	(1, 2)
C.	(2, 0)	D.	(1, -2)

12. A chord of a circle subtends an angle of 120° at the centre of a circle of diameter 4Ö3cm. Calculate the area of the major sector.

A.	$32\pi cm^2$	В.	16πcm ²
C.	$8\pi cm^2$	D.	$4\pi cm^2$

If $\tan q = 4/3$, calculate $\sin^2 \theta - \cos^2 \theta$. 13.

In the diagram above, PST is a straight line, PQ =QS = RS. If $< RSRT = 72^{\circ}$, find x. A. 72° Β. 360 C. 24^{0} D. 18^{0}

- 15. The locus of a point P which is equidistant from two given points S and T is
 - A. a perpendicular to ST
 - Β. a line parallel to ST
 - C. the angle bisector of PS and ST
 - D. the perpendicular bisector ST
- 16. A solid hemisphere has radius 7cm. Find the total surface area.
 - 400cm² 462cm² B. A. C. 308cm² D. 66cm^2

17.

The angle PGR below is

y = 4

x = 3

3cm

23cm

- a scalene triangle A.
- B. an isosceles triangle
- C. an equilateral triangle
- D. an obtuse - angled triangle

The sum of the interior angles of a polygon is 20 18. right angles. How many sides does the polygon have? 10 A. B. 12 20 D. 40 C.

Find the equation of the set of points which are 19. equidistant from the parallel lines x = 1 and x =

B.

D.

20.

In the diagram below, a cylinder is surrounded by a hemispherical bowl. Calculate the volume of the solid.

- 216πcm³ B. 198πcm³ A. C. $180\pi \text{cm}^3$ D. $162\pi \text{cm}^3$
- A hunter 1.6m tall, views a bird on top of a tree at an 21. angle of 45°. If the distance between the hunter and the tree is 10.4m, find the height of the tree.

22. The mean of a set of six numbers is 60. if the mean of the first five is 50. Find the sixth number in the set.

The range of the data k + 2, k - 3, k + 4, k - 2, k, k - 5, 23. k + 3, k - 1 and k + 6 is.

A. 6 Β. C. 10 D

24.

25.

The distribution above shows the number of days a group of 260 students were absent from school in a particular term. How many students were absent for at least four days in the term?

The venn diagram below shows the number of students offering Music and History in a class of 80 students. If a student is picked at random from the class, what is the probability that he offers Music only?

A. 1	0.13	В.	0.25
C.	0.38	D.	0.50

Find	the mean o	f the data 7,-3,4	-2,5,-9,4,8,-6,12			
A.	1	B.	2			
C.	3	D.	4			
The p	probability	of a student passi	ng any examination			
is 2/3	3. if the stud	lent takes three e	xamination, what is			
the probability that he will not pass any of them?						

1/278/27 Β. Α. C. 4/9 D. 2/3

How many three-digit numbers can be formed from 32564 without digit being repeated?

А.	10	В.	20
C.	60	D.	120

The acres for rice, principle, cassava, cocoa and palm oil, in a certain district are given respectively as 2,5,3, 11 and 9. what is the angle of the sector for cassava in a pie chart?

A.	360	В.	60°
C.	108°	D.	180°

30. Calculate the mean deviation of the set of numbers 7,3,14,9,7 and 8

A.	$2^{1}/_{2}$	В.	$2^{1}/_{3}$
C.	2 ¹ / ₆	D.	1 ¹ / ₆

31. Find the maximum value of y in the equation

	y = 1 - 2x	$x - 3x^2$	
A.	5/3	В.	4/3
C.	5/4	D.	3⁄4

32. If the 9th term of an A. P is five times the 5th term, find the relationship between a and d.

28.

	A. C.	a + 2d = 0 $3a + 5d = 0$	B. D.	a + 3d = 0 $2a + d = 0$		C. (-3, (0 -3	0) 3)		D. (9, 4) (12, 1)
33.	The tin proport takes 4 long wi	ne taken to do a ional to the num 5men to do a pie 11 take 25 men?	piece of ber of m ece of wo	work is inversely en employed. If it rk in 5 days, how	41.	Find th $x + 2/4$ A. C.	e range of values -2x - 3/3 < 4 x > -3 x > -6	of x for v B. D.	which x < 4 x < 8
	A. C.	5 days 12 days	B. D.	9 days 15 days	42.	If x var	ies directly as \sqrt{n} a	and $x = 9$	when $n = 9$, find x
34.	The bin	ary operation is d	lefined or	the set of integers $2(3*4)$		A. C.	27 4	B. D.	
	A. C.	19 59	+ q. mu B. D.	38 67	43.	The sum $1 + 1/3$	m of infinity of th $+ 1/9 + 1/27 +$	e series	is
35.	If –2 is	the solution of th	e equatio	on $2x + 1 - 3c = 2c$		A. C.	3/2 10/3	B. D.	5/2 11/3
	+ 3x A. C.	1 3	D.	2 4	44.	Make r x/r + a	the subject of the $= a/r$	formula	
36.	If N =	3 5 -4				A. C.	$\frac{a}{(x-a)}$ $\frac{a^2}{(x-a)}$	B. D.	$(a/x + a) = \frac{a^2}{(x + a)}$
	-2	$\begin{bmatrix} 5 & -3 & -5 \\ 2 & 1, \end{bmatrix}$ find	/N/		45.	If $y = x$ A.	$x^2 - 1/x$, find dy/d $2x + x^2$	x B.	$2x - x^2$
	A. C.	91 23	B. D.	65 17		C.	$2x-1/x^2$	D.	$2x - 1/x^2$
37.	Use the	graph below to f	ind the v	alues of p and q if	46.	Evalua	te sin3xdx		
	px + qy	< 4		2		A. C.	$-2/3 \cos 3x + c$ $1/3 \cos 3x + c$	B. D.	$-1/3 \cos 3x + c$ 2/3 cos 3x + c
					47.	A circle at the ra increas	e with a radius 5c ate of 0.2cms-1. wh e in the area?	m has its nat will be	radius increasing the corresponding
	A. C.	p = 1, q = 2 p = -1, q = 2	B. D.	p = 2, q = 1 p = 2, q = -1		A. C.	5p 2p	B. D.	4p p
38.	The inv A.	verse of the functi 1/3(x + 4)	f(x) = B	3x + 4 is 1/4(x + 3)	48.	If dy/dz terms c	x = 2x - 3 and y of x.	= 3 whe	en x = 0, find y in
39	C. Solve fo	1/5(x - 5)	D.	1/3(x-4)		A. C.	$\begin{array}{l} x^2 - 3x \\ 2x^2 - 3x \end{array}$	B. D.	$x^2 - 3x + 3$ $x^2 - 3x - 3$
	$x^{3} - 5x^{2}$ A. C.	$x^{2} - x + 5 = 0$ 1, 1 or 5 1, 1 or -5	B. D.	–1, 1 or –5 1, -1 or 5	49.	Find th A. C.	e derivative of y = 2 sin 5x cos 5x 10 sin 5x cos 5x	= sin ² (5x B. D.) with respect to x 5 sin 5x cos 5x 15 sin 5x cos 5x
40.	If $P = \begin{bmatrix} f \\ f \end{bmatrix}$	2, 1) -3 0) and I is a 2	2 x 2 unit	matrix, evaluate	50.	The slo	pe of the tangent	to the cur	$ve y = 3x^2 - 2x + 5$
	A. $(2, 1)$ (4, 1)	(2p + 41)		B.(1,0) (0,1)		A. C.	1 5	B. D.	4 61.
		•		Mathem	atics	200	3		
1.	Simplif A.	$ \int_{-2^{31}/_{60}}^{5y} 1 - (2^{1}/_{3} \times 1^{1}/_{4}) $	+ ³ / ₅ B.	-27/15		А. С.	133 63	B. D.	113 84
2	C.	$-1^{19}/_{60}$	D.	$-\mathbf{l}_{15}^{1/}$	3.	Simpli A.	fy 213 ₄ x 23 ₄ 13211.	B.	10311.
۷.	If 22 ¹ / ₂ women	% are children, 47 , find the number	$7^{1/2}$ % are of men i	men and 84 are n the hall.		C.	103214	D.	122314
	 								

4.	A woman bu	iys 270 orang	es for # 1	800.00 and sells		A.	(13)	В	(1-3)
	at 5 101 #40.	200. What is no		#260.00			(01)	_	(0 - 1)
	A. #03 C. #16	520.00	в. D.	#2160.00		C.	(13) (0-1)	D.	(-13)
5.	Simplify (V	98 - √50)					(0 1)		(0 1)
	~ <u></u>	√32			16.	Find th	e values of x a	nd v respec	tively if $3x - 5y + 5$
	A. 1/2		B.	1⁄4		= 0 and	14x - 7y + 8 =	= 0	5 5
	C. 1		D.	3		A.	-4, -5	В.	-5, -4
						C.	5,4	D.	4, 5
6.	The sum of	four numbers	is 1214 ₅	. what is the					
	average exp	ressed in base	e five?		17.	If –(x,	(2) = (3, 3x)		
	A. 411		B.	401		(4x,	1) (4, -5) fi	nd the valu	e of x
	C. 141		D.	114		A.	-2	В.	-5
						C.	2	D.	5
7.	Evaluate log	$g_{\sqrt{2}}^{4} + \log_{1/2}^{16}$	$1 - \log_4 32$						
	A2.5	5	B.	5.5	18.	Find t	he range of	values of	x satisfying the
	C. –5.	5	D.	2.5		inequa	lities $5 + x \le 8$	and $13 + 3$	7.
2	~					A.	$-6 \le x \le 3$	B.	$-6 \le x \le -3$
8.	Given:		0	1.00)		С.	$3 \le x \le 6$	D.	$-3 \le x \le 3$
	$U = \{Even r$	numbers betwe	een () and	d 30}	10	, i		.1 1	
	$P = \{Multiple A \}$	ples of 6 betw	een 0 an	d 30}	19.	x varie	es directly as	the produc	t of U and V and V
	$Q = \{Multiple \}$	ples of 4 betwe	een 0 and	1 30}		1nverse	ery as their sun	1.11 X = 3 V	V = 3 and V = 3
	Eind (DUO)	c				r, what		\mathbf{D}	$\int and v = 5?$
	Λ (0)	(1, 1, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	D	(2 4 14 18 26)		A.	6	D. D	3
	$A = \{0,, 0\}$	2, 0, 22, 20	D. D	$\{2, 4, 14, 10, 20\}$		C.	0	D.	5
	C. ¹² ,	10, 14, 22, 20)	D.	$\{0, 10, 14, 22, 20\}$	20		У		
9.	In a class of	f 40 students.	32 offer	Mathematics, 24	20.		JP ♠		
	offer Physic	s and 4 offer	neither	Mathematics nor				*	
	Physics. Ho	ow many offe	er both	Mathematics and		<u> </u>		Y	
	Physics?	5				-			
	A. 16		B.	4		;	<u>'</u>	<u> </u>	<i>x</i>
	C. 20		D.	8				δ	
								××.	
10.	Find (1/0.0	$6 \div 1/0.042)^{-1}$	¹ , correc	t to two decimal					°0
	places								Ň
	A. 4.4	2	В.	3.14					
	C. 1.5	3	D.	1.43		Triang	gle OPQ abo	ove is the	solution of the
11	1002x 1/27x	1 1 6 1 1				inequal	ities.	4.0	
11.	If $9^{2x-1/2/x+1}$	$r^{1} = 1$, find the	e value o	IX.		A. D	$x - 1 \le 0, y - 1 \ge 0$	$+ x \leq 0, y, -$	$x \le 0$
	A. 2 C 5		В. D			В. С	$x + 1 \ge 0, y$	$+ x \leq 0, y, \cdot$	$X \ge 0$
	C. 5		D.	3		C. D	$y + x \le 0, y = x \le 0, y \le 0$	$-x \ge 0, x -$	$1 \ge 0$ $x \ge 0$
12	Factorize co	mnletely				D.	$x - 1 \le 0, y -$	$x \ge 0, y +$	$X \ge 0$
12.	4abx - 2axy	$x = 12b^2x + 6b^2x$	κv		21	Three	consecutive ter	ms of a geo	metric progression
	A. $2x($	(2b - a)(2b - v)	B.	2x(a-3b)(b-2y)	21.	are giv	en as $n - 2$, n	and $n + 3$	find the common
	C. 2x((2b - a)(3b - v)	D.	2x(a - 3b)(2b - v)		ratio.	,		
		, , , , , , , , , , , , , , , , , , ,				A.	2/3	B.	3/2
13.	The sum o	f the first n	terms	of an arithmetic		C.	1/2	D.	1⁄4
	progression	is 252. if the	e first tei	m is –16 and the					
	last term is 7	2, find the nu	mber of t	erms in the series.	22.	The ler	igth a person c	an jump is	inversely
	A. 7		В.	9		proport	ional to his we	igth. If a 20	kg person can jump
	C. 6		D. 📃	8		1.5 m,	find the consta	ant of propo	rtionality.
						A.	30	В.	60
14.	The graphs	of the functio	$\mathbf{n} \mathbf{y} = \mathbf{x}^2$	+ 4 and a straight		C.	15	D.	20
	line PQ are o	drawn to solve	the equa	ation $x^2 - 3x + 2 =$			\frown		
	0. what is th	e equation of	PQ?		23.		N	Ж	
	A. y =	3x + 2	В.	y = 3x - 4				. []	
	C. y =	3x + 4	D.	$\mathbf{y} = 3\mathbf{x} - 2$					
15	A matri Di		D -1 (1 2)			MK	\downarrow	
15.	A matrix P	has an inverse	r · = (1-3) 1) Eind D				/ V	
			(<i>J</i> , <i>I</i>) I'IIIU F .					

In the diagram above, O is the centre of the circle, POM is a diameter and \angle MNQ = 42°. calculate $\angle QMP.$ 1200 1 2 2 0

A.	138°	Б.	132°
C.	42 [°]	D.	48^{0}

- 24. The locus of a point P which moves on one side only of a straight line XY so that \angle XPY = 90° is.
 - A. the perpendicular bisector of XY
 - Β. a circle C. a semicircle
 - D. an arc of a circle through X,Y

25.

In the diagram above, PQ is parallel to RS. What is the value of $\alpha + \beta + y$?

A.	180°	В.	90°
C.	200°	D.	360°

26. Whiceh of the following is the graph of $\sin\theta$ for $\frac{-\pi}{2} \le 0 \le \frac{3\pi}{2}$

27.

In the diagram above, PQR is a straight line and PS is a tangent to the circle QRS with $/PS / = \angle/SR /$ and SPR = 40° . find \angle PSQ.

- В. 20° 10^{0} A. 30° C. 40° D.
- If $\pi/2 \le 2\pi$, find the maximum value of $f(\theta) = 4/6 + 2$ 28. $\cos \theta$

- An aeroplane flies due north from airports P to O and then flies due east to R. if Q is equidistant from P and R, find the bearing of P and R.
 - A. 270° B. **090**⁰ C. 1350 D. 225°

29.

Find the value of p, if the line of which passes through 30. (-1, -p) and (-2, 2) is parallel to the line 2y + 8x - 17= 0.

- 31. Find the equation of the locus of a point P(x, y) which is equidistant form Q(0,0) and R(2, 1).
 - A. 2x + y = 5B. $2\mathbf{x} + 2\mathbf{y} = 5$ C. D. 4x - 2y = 54x + 2y = 5
- 32. An arc of a circle subtends an angle of 30° on the circumference of a circle of a radius 21cm. Find the length of the arc

33. trapezium has two parallel sides of length 5cm and 9cm. If the area is 121cm², find the distance between the parallel sides.

XYZ is a circle centre O and radius 7cm. Find the area of the shaded region.

A.	14cm^2	В.	38cm ²
C.	77cm ²	D.	84cm ²

A triangle has vertices P(-1, 6), Q(-3, -4) and R(1, -4). Find the midpoints of PQ and QR respectively. (-1, 0) and (-1, -1) B. A. (-2, 1) and (-1, -4)

C. (0, -1) and (-1, -4) D. (-2, 1) and (0, 1)

Evaluate $\int_{2}^{3} (x^2 - 2x) dx$ 36.

C. 2 D. 4	А.	4/3	В.	1/3
	C.	2	D.	4

37.	If $y = 3 \sin (-4x)$, dy/ dx is			
	A.	$-12\cos(-4x)$	B.	12 sin (-4x)
	C.	$12x\cos(4x)$	D.	$-12x\cos(-4x)$

Determine the maximum value of $y = 3x^2 + 5x - 3$ at

A. 6 B. 0 C. 2. D. 4

39. Find the slope of the curve $y = 2x^2 + 5x - 3$ at (1, 4).

8. If $6\log_x 2 - 3\log_x 3 = 3\log_5 0.2$, find x. A. 3/8C. 4/3B. 3/4D. 8/3

9.

The shaded region in the venn diagram above A. $P^c \cap (QR)B$. $P \cap Q$ C. $P^c U(Q \cap R)$ D. $P^c \cap (QUR)$

- 10. In a class of 40 students, each student offers at least one of Physics and Chemistry. If the number of students that offer Physics is three times the number that offer both subjects and the number that offers Chemistry is twice the number that offer Physics, find the number of students that offer Physics only.
 A. 25 B. 15
 C. 10 D. 5
- 11. Find the values of x where the curve $y = x^3 + 2x^2 - 5x - 6$ crosses the x-axis. A. -2, -1 and 3 B. -2, 1 and -3 C. 2, -1 and -3 D. 2, 1 and 3

12. Find the remainder when $3x^3 + 5x^2 - 11x + is divided by x + 3$ A. 4 B. 1 C. -1 D. 4

- 13. Factorize completely $ac 2bc a^2 + 4b^2$ A. (a - 2b)(c + a - 2b)B. (a - 2b)(c - a - 2b)C. $(a - 2b)(c + a \pm 2b)$
 - D. (a-2b)(c a + 2b)

14. y is inversely proportional to x and y = 4 when x = 1/2. find x when y = 10A. 1/10 B. 1/5C. 2 D. 10

15. The length L of a simple pendulum varies directly as the square of its period T. if a pendulum with period 4 secs is 64cm long, find the length of a pendulum whose period is 9 sec.

A.	36cm	B.	96ccm
C.	144cm	D.	324cm

16.

20.

0

The shaded area in the diagram above is represented by

- A. $\{(x, y) : y + 3x < 6\}$ B. $\{(x, y) : y + 3x < -6\}$ C. $\{(x, y) : y - 3x < -6\}$ D. $\{(x, y) : y - 3x < -6\}$
- 17. What are the integral values of x which satisfy the inequality $-1 < 3 2x \le 5$? A. -2, 1, 0, -1 B. -1, 0, 1, 2C. -1, 0, 1, D. 0, 1, 2
- 18. The nth terms of two sequences are $Q_n 3.2^{n-2}$ and $U_m = 3.2^{2m-3}$. find the product of Q_2 and U_2 A. 3 B. 6 C. 12 D. 18

19. Given that the first and fourth terms of a G.P are 6 and 162 respectively, find the sum of the first three terms of the progression.
A. 8 B. 27

C.	48	D.	78

Find the sum to infinity of the series $\frac{1}{2}$, $\frac{1}{6}$, $\frac{1}{18}$, $\frac{1}{18}$, $\frac{1}{16}$, $\frac{1$

А.	1	В.	3/4
C.	2/3	D.	1/3+

21. If the operation * on the set of integers is defined by p*q = "pq, find the value of 4*(8*32). A. 16 B. 8

D.

3

A.	16	
C.	4	

22. The inverse of the matrix (2 1) (1)1) is A. $(1 \ 1)$ B. (1 - 1)(-12) $(1 \ 2)$ (1 - 1)C. $(1 \ 1)$ D. $(1 \ 2)$ (-12) 23. If $P = 1 \quad 0 \quad -1$ 4 5 -1 0 1 then /P/ is A. -8 Β. 0 C. 4 D. 8

24. The sum of the interior angles of a pentagon is 6x + 6y. find y in terms of x

A.	y = 60 - x B.	y = 9	90 - x
C.	y = 120 - x	D.	y = 150 - x

PQRSTV is a regular polygon of side 7cm inscribed in 25. a circle. Find the circumference of the circle PQRSTV.

42cm

56cm

P, R and S lie on a circle centre O as shown above while Q lies outside the circle. Find DPSO.

27.

26.

In the diagram above, PQ = 4cm and TS = 6cm, if the area of parallelogram PQTU is 32cm², find the area of the trapezium PQRU $\mathbf{24}$

 180°

А.	24cm ²	1	3.	48cm ²
C.	60cm ²	Ι	D.	72cm ²

- 28. An arc of a circle of length 22cm subtends an angle of $3x^0$ at the centre of the circle. Find the value of x if the diameter of the circle is 14cm. 60°
 - 30⁰ A. B. C. 120° D.
- 29. Determine the locus of a point inside a square PQRS which is equidistant from PQ and QR
 - The diagonal PR. B. The diagonal QS A.
 - C. Side SR
 - D. The perpendicular bisector of PQ.

The locus of a point which is 5cm from the line LM 30. is a

- pair of lines on opposite sides of LM and A. parallel to it, each distances 5cm form LM
- B. line parallel to LM and 5cm from LM
- C. pair of parallel lines on one side of LM and parallel to LM
- line distance 10cm from LM and D. parallel to LM.
- Find the value of $\alpha^2 + \beta^2$ if a + b = and the distance 31. between the points $(1, \alpha)$ and $(\beta, 1)$ is 3 units. A. 3 B. 5 C.

32. Find the midpoint of the line joining P(-3, 5) and Q(5, -3).

A. (4, -4)B. (4, 4)C. (2, 2)D. (1,1)33. 15 cm ,45° 60 Find the value of x in the figure above. 20√6 A. Β. 15√6 5√6 C. D. 3√6 The shadow of a pole $5\sqrt{3}$ m high is 5m. find the 34. angle of elevation of the sun. 45° A. 30° Β. C. 600 D. 75^{0} 35. Find the derivative of (2 + 3x)(1 - x) with respect to х B. A. 1 - 6xC. D. -3 36. Find the derivative of the function $y = 2x^{2}(2x - 1)$ at the point x = -1A. -6 Β. -4 C. 16 D. 18 37 If y – 3 cos (x/3), find dy/dx when x = $3\pi/2$ 2 B. A. 1 C. -1 D. -3 What is the rate of change of the volume v of 38. hemisphere with respect to its radius r when r = 2? A. 2π Β. 4π C. 8π D. 16π 39. $(x^2 - 1) dx$ Evaluate A. $6^{2}/$ Β. $\frac{2}{3}$ -6²/₃ C. D. -2/ 40. other 150 Millet

> The pie chart above shows the distribution of the crops harvested from a farmland in a year. If 3000 tonnes of millet is harvested, what amount of beans is harvested?

A.	9000 tonnes	B.	6000 tonnes
C.	1500 tonnes	D.	1200 tonnes

- 41. I. Rectangular bars of equal width
 - II. The height of each rectangular bar is proportional to the frequency of the3 corresponding class interval.
 - III. Rectangular bars have common

sides with no gaps in between.

